Suppr超能文献

区分视神经与周围脑脊液:在与多发性硬化症相关萎缩中的应用。

Disambiguating the optic nerve from the surrounding cerebrospinal fluid: Application to MS-related atrophy.

作者信息

Harrigan Robert L, Plassard Andrew J, Bryan Frederick W, Caires Gabriela, Mawn Louise A, Dethrage Lindsey M, Pawate Siddharama, Galloway Robert L, Smith Seth A, Landman Bennett A

机构信息

Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA.

Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Magn Reson Med. 2016 Jan;75(1):414-22. doi: 10.1002/mrm.25613. Epub 2015 Mar 7.

Abstract

PURPOSE

Our goal is to develop an accurate, automated tool to characterize the optic nerve (ON) and cerebrospinal fluid (CSF) to better understand ON changes in disease.

METHODS

Multi-atlas segmentation is used to localize the ON and sheath on T2-weighted MRI (0.6 mm(3) resolution). A sum of Gaussian distributions is fit to coronal slice-wise intensities to extract six descriptive parameters, and a regression forest is used to map the model space to radii. The model is validated for consistency using tenfold cross-validation and for accuracy using a high resolution (0.4 mm(2) reconstructed to 0.15 mm(2)) in vivo sequence. We evaluated this model on 6 controls and 6 patients with multiple sclerosis (MS) and a history of optic neuritis.

RESULTS

In simulation, the model was found to have an explanatory R-squared for both ON and sheath radii greater than 0.95. The accuracy of the method was within the measurement error on the highest possible in vivo resolution. Comparing healthy controls and patients with MS, significant structural differences were found near the ON head and the chiasm, and structural trends agreed with the literature.

CONCLUSION

This is a first demonstration that the ON can be exclusively, quantitatively measured and separated from the surrounding CSF using MRI.

摘要

目的

我们的目标是开发一种准确的自动化工具,用于对视神经(ON)和脑脊液(CSF)进行特征描述,以更好地了解疾病中的视神经变化。

方法

多图谱分割用于在T2加权磁共振成像(MRI,分辨率为0.6立方毫米)上定位视神经及其鞘。将高斯分布之和拟合到冠状切片强度上,以提取六个描述性参数,并使用回归森林将模型空间映射到半径。使用十折交叉验证对模型的一致性进行验证,并使用高分辨率(0.4平方毫米重建为0.15平方毫米)的体内序列对模型的准确性进行验证。我们在6名对照者和6名患有多发性硬化症(MS)且有视神经炎病史的患者身上评估了该模型。

结果

在模拟中,发现该模型对视神经和鞘半径的解释性决定系数大于0.95。该方法的准确性在最高可能的体内分辨率的测量误差范围内。比较健康对照者和MS患者,发现视神经头部和视交叉附近存在显著的结构差异,且结构趋势与文献一致。

结论

这首次证明了使用MRI可以单独对视神经进行定量测量,并将其与周围的脑脊液区分开来。

相似文献

2
Optic nerve imaging in multiple sclerosis.多发性硬化症中的视神经成像
J Neuroimaging. 2007 Apr;17 Suppl 1:42S-45S. doi: 10.1111/j.1552-6569.2007.00136.x.

引用本文的文献

2
Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net.使用3D U-Net对MRI上的视神经进行自动分割和量化。
J Med Imaging (Bellingham). 2023 May;10(3):034501. doi: 10.1117/1.JMI.10.3.034501. Epub 2023 May 15.
5
Quantitative characterization of optic nerve atrophy in patients with multiple sclerosis.多发性硬化症患者视神经萎缩的定量特征
Mult Scler J Exp Transl Clin. 2017 Sep 13;3(3):2055217317730097. doi: 10.1177/2055217317730097. eCollection 2017 Jul-Sep.

本文引用的文献

2
Robust Optic Nerve Segmentation on Clinically Acquired CT.基于临床获取CT的强健视神经分割
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:90341G. doi: 10.1117/12.2043715.
5
Non-local statistical label fusion for multi-atlas segmentation.非局部统计标签融合的多图谱分割。
Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.
7
PyXNAT: XNAT in Python.PyXNAT:Python 版 XNAT。
Front Neuroinform. 2012 May 24;6:12. doi: 10.3389/fninf.2012.00012. eCollection 2012.
10
Multiple sclerosis and disease-modifying therapies.
Neurology. 2011 Jul 26;77(4):e26. doi: 10.1212/WNL.0b013e318229e6ca.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验