Suppr超能文献

用于神经再生的活性支架

Living scaffolds for neuroregeneration.

作者信息

Struzyna Laura A, Katiyar Kritika, Cullen D Kacy

机构信息

Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States.

出版信息

Curr Opin Solid State Mater Sci. 2014 Dec;18(6):308-318. doi: 10.1016/j.cossms.2014.07.004. Epub 2014 Sep 19.

Abstract

Neural tissue engineers are exploiting key mechanisms responsible for neural cell migration and axonal path finding during embryonic development to create living scaffolds for neuroregeneration following injury and disease. These mechanisms involve the combined use of haptotactic, chemotactic, and mechanical cues to direct cell movement and re-growth. Living scaffolds provide these cues through the use of cells engineered in a predefined architecture, generally in combination with biomaterial strategies. Although several hurdles exist in the implementation of living regenerative scaffolds, there are considerable therapeutic advantages to using living cells in conjunction with biomaterials. The leading contemporary living scaffolds for neurorepair are utilizing aligned glial cells and neuronal/axonal tracts to direct regenerating axons across damaged tissue to appropriate targets, and in some cases to directly replace the function of lost cells. Future advances in technology, including the use of exogenous stimulation and genetically engineered stem cells, will further the potential of living scaffolds and drive a new era of personalized medicine for neuroregeneration.

摘要

神经组织工程师正在利用胚胎发育过程中负责神经细胞迁移和轴突路径寻找的关键机制,来创建用于损伤和疾病后神经再生的活体支架。这些机制涉及联合使用趋触性、趋化性和机械信号来引导细胞移动和再生。活体支架通过使用预先设计结构的细胞来提供这些信号,通常与生物材料策略相结合。尽管在实施活体再生支架方面存在一些障碍,但将活细胞与生物材料结合使用具有相当大的治疗优势。当代用于神经修复的主要活体支架正在利用排列的胶质细胞和神经元/轴突束,来引导再生轴突穿过受损组织到达合适的靶点,在某些情况下直接替代丢失细胞的功能。包括使用外源刺激和基因工程干细胞在内的未来技术进步,将进一步提升活体支架的潜力,并推动神经再生个性化医学的新时代。

相似文献

1
Living scaffolds for neuroregeneration.用于神经再生的活性支架
Curr Opin Solid State Mater Sci. 2014 Dec;18(6):308-318. doi: 10.1016/j.cossms.2014.07.004. Epub 2014 Sep 19.

引用本文的文献

4
3D Bioprinting for Spinal Cord Injury Repair.用于脊髓损伤修复的3D生物打印
Front Bioeng Biotechnol. 2022 Apr 20;10:847344. doi: 10.3389/fbioe.2022.847344. eCollection 2022.

本文引用的文献

7
Engineered neural tissue for peripheral nerve repair.用于周围神经修复的工程神经组织。
Biomaterials. 2013 Oct;34(30):7335-43. doi: 10.1016/j.biomaterials.2013.06.025. Epub 2013 Jul 5.
8
Polydendrocytes in development and myelin repair.发育中的多形细胞和髓鞘修复。
Neurosci Bull. 2013 Apr;29(2):165-76. doi: 10.1007/s12264-013-1320-4. Epub 2013 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验