Kurmanbayeva Assylay, Bekturova Aizat, Srivastava Sudhakar, Soltabayeva Aigerim, Asatryan Armine, Ventura Yvonne, Khan Mohammad Suhail, Salazar Octavio, Fedoroff Nina, Sagi Moshe
Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel.
King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
Plant Physiol. 2017 Sep;175(1):272-289. doi: 10.1104/pp.17.00780. Epub 2017 Jul 25.
and are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in and : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to HS, NH, and pyruvate. The major function of -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to HS. This activity was significantly higher in than in , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in than in These results suggest that the low organic-S level in is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of and .
[植物名称1]和[植物名称2]是几乎相同的盐生植物,其可食用的肉质嫩枝有望用于盐水环境下的商业化生产。增强的硫营养可能有益于自然生长在高硫酸盐环境中的作物。然而,关于盐生植物中的硫营养却知之甚少。在此我们表明,[植物名称1](生态型RN)在补充硫酸盐后生物量和有机硫积累显著增加,而[植物名称2](生态型VM)则不然,反而表现出硫酸盐积累增加。我们研究了两条途径在[植物名称1]和[植物名称2]中对有机硫和生物量积累的作用:生成半胱氨酸的硫酸盐还原途径以及将半胱氨酸降解为硫化氢、氨和丙酮酸的L-半胱氨酸脱硫酶途径。β-乙酰丝氨酸(硫醇)裂解酶(OAS-TL;EC 2.5.1.47)的主要功能是形成L-半胱氨酸,但我们的研究表明,这两种盐生植物的OAS-TL A和OAS-TL B也是将L-半胱氨酸降解为硫化氢的酶。这种活性在[植物名称1]中显著高于[植物名称2],尤其是在补充硫酸盐后。硫酸盐还原途径关键酶腺苷5'-磷酸硫酸还原酶(APR,EC 1.8.99.2)的活性在[植物名称1]中显著高于[植物名称2]。这些结果表明,[植物名称2]中低有机硫水平是OAS-TLs对半胱氨酸高降解率的结果,而[植物名称1]中更高的有机硫和生物量积累是更高的APR活性和低半胱氨酸降解率的结果,从而导致更高的净半胱氨酸生物合成。这些结果为盐生植物种植者实现[植物名称1]和[植物名称2]更好的生长速率和营养价值提供了初步路线图。