Suppr超能文献

双层 MoS 封装在 HfO 中 的电子输运

Electronic Transport in Bilayer MoS Encapsulated in HfO.

机构信息

Naval Research Laboratory , Code 7130, Washington, D.C. 20375, United States.

Sotera Defense Solutions , Crofton, Maryland 21114, United States.

出版信息

ACS Appl Mater Interfaces. 2017 Aug 23;9(33):27995-28001. doi: 10.1021/acsami.7b04397. Epub 2017 Aug 10.

Abstract

The exact nature of the interface between a two-dimensional crystal and its environment can have a significant impact on the electronic transport within the crystal, and can place fundamental limitations on transistor performance and long-term functionality. Two-dimensional transition-metal dichalcogenides are a new class of transistor channel material with electronic properties that can be tailored through dielectric engineering of the material/environmental interface. Here, we report electrical transport measurements carried out in the insulating regime of bilayer molybdenum disulfide, which has been encapsulated within a high-κ hafnium oxide dielectric. Temperature- and carrier-density-dependent measurements show that for T < 130 K the transport is governed by resonant tunneling, and at T = 4.2 K the tunneling peak lineshape is well-fitted by a Lorentzian with an amplitude less than e/h. Estimates of tunneling time give τ ∼ 1.2 ps corresponding to a frequency f ∼ 0.84 THz. The tunneling processes are observable up to T ∼ 190 K (more than a factor of 6 higher than that previously reported for MoS on SiO) despite the onset of variable range hopping at T ∼ 130 K, demonstrating the coexistence of the two transport processes within the same temperature range. At constant temperature, varying the Fermi energy allows experimental access to each transport process. The results are interpreted in terms of an increase in charge carrier screening length and a decrease in electron-phonon coupling induced by the hafnium oxide. Our results represent the first demonstration of the intermediate tunneling-hopping transport regime in a two-dimensional material. The results suggest that interface engineering may be a macroscopic tool for controlling quantum transport within such materials as well as for increasing the operating temperatures for resonant-tunneling devices derived from such materials, with applications in high-frequency electronics and logic devices.

摘要

二维晶体与其环境之间的界面的精确性质会对晶体内部的电子输运产生重大影响,并可能对晶体管性能和长期功能施加基本限制。二维过渡金属二卤化物是一类新的晶体管沟道材料,其电子特性可以通过材料/环境界面的介电工程进行调整。在这里,我们报告了在双层二硫化钼的绝缘区进行的电输运测量,该二硫化钼已被封装在高介电常数的氧化铪电介质中。温度和载流子密度依赖的测量表明,在 T < 130 K 时,输运由共振隧穿控制,在 T = 4.2 K 时,隧穿峰线宽很好地符合洛伦兹分布,幅度小于 e/h。对隧穿时间的估计给出 τ ∼ 1.2 ps,对应于频率 f ∼ 0.84 THz。尽管在 T ∼ 130 K 时开始出现变程跳跃,但在 T ∼ 190 K 时仍可观察到隧穿过程(比之前报道的 MoS 在 SiO 上的温度高了 6 倍以上),这表明在相同温度范围内存在两种输运过程。在恒定温度下,改变费米能可以使实验能够访问每种输运过程。结果根据氧化铪引起的载流子屏蔽长度的增加和电子-声子耦合的减少来解释。我们的结果代表了在二维材料中首次证明中间隧穿-跳跃输运态。结果表明,界面工程可能是控制此类材料中量子输运以及提高源自此类材料的共振隧穿器件工作温度的宏观工具,在高频电子和逻辑器件中有应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验