Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore.
Institute of Materials Research and Engineering, 3 Research Link, 117602 Singapore.
Sci Rep. 2017 Jan 13;7:40669. doi: 10.1038/srep40669.
Two-dimensional layered semiconductors such as molybdenum disulfide (MoS) at the quantum limit are promising material for nanoelectronics and optoelectronics applications. Understanding the interface properties between the atomically thin MoS channel and gate dielectric is fundamentally important for enhancing the carrier transport properties. Here, we investigate the frequency dispersion mechanism in a metal-oxide-semiconductor capacitor (MOSCAP) with a monolayer MoS and an ultra-thin HfO high-k gate dielectric. We show that the existence of sulfur vacancies at the MoS-HfO interface is responsible for the generation of interface states with a density (D) reaching ~7.03 × 10 cm eV. This is evidenced by a deficit S:Mo ratio of ~1.96 using X-ray photoelectron spectroscopy (XPS) analysis, which deviates from its ideal stoichiometric value. First-principles calculations within the density-functional theory framework further confirms the presence of trap states due to sulfur deficiency, which exist within the MoS bandgap. This corroborates to a voltage-dependent frequency dispersion of ~11.5% at weak accumulation which decreases monotonically to ~9.0% at strong accumulation as the Fermi level moves away from the mid-gap trap states. Further reduction in D could be achieved by thermally diffusing S atoms to the MoS-HfO interface to annihilate the vacancies. This work provides an insight into the interface properties for enabling the development of MoS devices with carrier transport enhancement.
二维层状半导体如二硫化钼(MoS)在量子极限下是纳米电子学和光电子学应用的有前途的材料。了解原子薄的 MoS 沟道和栅介质之间的界面特性对于增强载流子输运性能至关重要。在这里,我们研究了具有单层 MoS 和超薄 HfO 高-k 栅介质的金属-氧化物-半导体电容器(MOSCAP)中的频率色散机制。我们表明,MoS-HfO 界面处硫空位的存在是产生界面态的原因,其密度(D)达到约 7.03×10cm eV。这可以通过 X 射线光电子能谱(XPS)分析证明,其 S:Mo 比约为 1.96,偏离其理想化学计量值。基于密度泛函理论框架的第一性原理计算进一步证实了由于硫缺乏而存在的陷阱态,这些陷阱态存在于 MoS 带隙内。这与弱积累时约 11.5%的电压相关频率色散一致,随着费米能级远离隙间陷阱态,频率色散单调减小至强积累时约 9.0%。通过将 S 原子热扩散到 MoS-HfO 界面以消除空位,可以进一步降低 D。这项工作为开发具有增强载流子输运性能的 MoS 器件提供了对界面特性的深入了解。