Paul Scherrer Institute, CH-5232 Villigen, Switzerland.
J Chem Phys. 2018 Aug 7;149(5):054104. doi: 10.1063/1.5043052.
This presentation reports the theoretical study of 3d core-electron excitation in lanthanide compounds in terms of electronic structure effects and optical properties. The calculations are done at the Density-Functional Theory (DFT) level complemented with an effective Hamiltonian based on ligand-field theory. The strategy consists of obtaining from DFT a totally symmetric density, where an active subspace is set up that forms the basis of the fivefold 3d and sevenfold 4f atomic orbitals of the lanthanide ion. This active subspace is defined with the fractional occupation of electrons, which represents open-shell species with the composite configuration 3d4f. Based on the ligand-field analysis of the DFT results, the multiplet energies and ligand-field effects associated with the configuration 3d4f are evaluated; and the X-ray absorption spectra are simulated in terms of the intra-atomic 4f → 3d4f electron transitions within the electric-dipole approximation. Examples for application are proposed taking into consideration the isolated trivalent lanthanides ions and compounds CsNaPrX, with X = F, Cl, and Br. The results are compared with available experimental data, where a good agreement is qualitatively achieved. Also, the screening of the inter-electron repulsion and spin-orbit coupling interaction is numerically obtained that allows one to establish a fully non-empirical treatment of the 3d core-electron excitation, which can be valuable in the characterization and modeling of the spectral profiles of lanthanide M-edge X-ray absorption spectroscopy. The enclosed theoretical model, which is being implemented in the Amsterdam Density Functional (ADF) suite of programs, is computationally economic and can be applied to any lanthanide system without limitations in terms of the size of the matrix elements of the effective Hamiltonian or the coordination symmetry of the lanthanide center.
本报告从电子结构效应和光学性质的角度,对镧系化合物的 3d 芯电子激发进行了理论研究。计算是在密度泛函理论(DFT)水平上进行的,辅以基于配体场理论的有效哈密顿量。该策略包括从 DFT 中获得完全对称的密度,其中建立了一个活动子空间,该子空间由镧系离子的五重 3d 和七重 4f 原子轨道组成。这个活动子空间是用电子的分数占据来定义的,它代表了具有复合构型 3d4f 的开壳物种。基于 DFT 结果的配体场分析,评估了与构型 3d4f 相关的多重态能量和配体场效应;并在电偶极近似下,根据原子内 4f → 3d4f 电子跃迁,模拟了 X 射线吸收光谱。考虑到孤立的三价镧系离子和化合物 CsNaPrX(X = F、Cl 和 Br),提出了一些应用实例。结果与现有实验数据进行了比较,定性上达到了很好的一致性。此外,还数值获得了电子排斥和自旋轨道耦合相互作用的屏蔽,这使得可以对 3d 芯电子激发进行完全非经验处理,这对于镧系元素 M 边 X 射线吸收光谱的光谱特征和建模是有价值的。所包含的理论模型正在阿姆斯特丹密度泛函(ADF)程序套件中实现,具有计算经济性,并且可以应用于任何镧系系统,而不受有效哈密顿量矩阵元的大小或镧系中心配位对称性的限制。