Suppr超能文献

间歇性低氧增强颈髓中段中间神经元的功能连接性。

Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons.

作者信息

Streeter Kristi A, Sunshine Michael D, Patel Shreya, Gonzalez-Rothi Elisa J, Reier Paul J, Baekey David M, Fuller David D

机构信息

Departments of Physical Therapy.

Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida 32610.

出版信息

J Neurosci. 2017 Aug 30;37(35):8349-8362. doi: 10.1523/JNEUROSCI.0992-17.2017. Epub 2017 Jul 27.

Abstract

Brief, intermittent oxygen reductions [acute intermittent hypoxia (AIH)] evokes spinal plasticity. Models of AIH-induced neuroplasticity have focused on motoneurons; however, most midcervical interneurons (C-INs) also respond to hypoxia. We hypothesized that AIH would alter the functional connectivity between C-INs and induce persistent changes in discharge. Bilateral phrenic nerve activity was recorded in anesthetized and ventilated adult male rats and a multielectrode array was used to record C4/5 spinal discharge before [baseline (BL)], during, and 15 min after three 5 min hypoxic episodes (11% O, H1-H3). Most C-INs (94%) responded to hypoxia by either increasing or decreasing firing rate. Functional connectivity was examined by cross-correlating C-IN discharge. Correlograms with a peak or trough were taken as evidence for excitatory or inhibitory connectivity between C-IN pairs. A subset of C-IN pairs had increased excitatory cross-correlations during hypoxic episodes (34%) compared with BL (19%; < 0.0001). Another subset had a similar response following each episode (40%) compared with BL (19%; < 0.0001). In the latter group, connectivity remained elevated 15 min post-AIH (30%; = 0.0002). Inhibitory C-IN connectivity increased during H1-H3 (4.5%; = 0.0160), but was reduced 15 min post-AIH (0.5%; = 0.0439). Spike-triggered averaging indicated that a subset of C-INs is synaptically coupled to phrenic motoneurons and excitatory inputs to these "pre-phrenic" cells increased during AIH. We conclude that AIH alters connectivity of the midcervical spinal network. To our knowledge, this is the first demonstration that AIH induces plasticity within the propriospinal network. Acute intermittent hypoxia (AIH) can trigger spinal plasticity associated with sustained increases in respiratory, somatic, and/or autonomic motor output. The impact of AIH on cervical spinal interneuron (C-IN) discharge and connectivity is unknown. Our results demonstrate that AIH recruits excitatory C-INs into the spinal respiratory (phrenic) network. AIH also enhances excitatory and reduces inhibitory connections among the C-IN network. We conclude that C-INs are part of the respiratory, somatic, and/or autonomic response to AIH, and that propriospinal plasticity may contribute to sustained increases in motor output after AIH.

摘要

短暂、间歇性的氧含量降低[急性间歇性缺氧(AIH)]可引发脊髓可塑性。AIH诱导神经可塑性的模型主要聚焦于运动神经元;然而,大多数颈中部中间神经元(C-INs)也对缺氧有反应。我们推测,AIH会改变C-INs之间的功能连接,并诱导放电的持续变化。在麻醉并通气的成年雄性大鼠中记录双侧膈神经活动,并使用多电极阵列在三个5分钟缺氧发作(11%氧气,H1 - H3)之前[基线(BL)]、期间和之后15分钟记录C4/5脊髓放电。大多数C-INs(94%)对缺氧的反应是放电频率增加或降低。通过对C-IN放电进行互相关来检查功能连接。具有峰值或谷值的互相关图被视为C-IN对之间兴奋性或抑制性连接的证据。与BL(19%)相比,一部分C-IN对在缺氧发作期间兴奋性互相关增加(34%;P < 0.0001)。另一部分与BL(19%)相比,在每次发作后有类似反应(40%;P < 0.0001)。在后者组中,AIH后15分钟连接性仍保持升高(30%;P = 0.0002)。抑制性C-IN连接在H1 - H3期间增加(4.5%;P = 0.0160),但在AIH后15分钟降低(0.5%;P = 0.0439)。脉冲触发平均法表明,一部分C-INs与膈运动神经元存在突触连接,并且在AIH期间这些“膈前”细胞的兴奋性输入增加。我们得出结论,AIH会改变颈中部脊髓网络的连接性。据我们所知,这是首次证明AIH在脊髓固有网络内诱导可塑性。急性间歇性缺氧(AIH)可触发与呼吸、躯体和/或自主运动输出持续增加相关的脊髓可塑性。AIH对颈脊髓中间神经元(C-IN)放电和连接性的影响尚不清楚。我们的结果表明,AIH将兴奋性C-INs纳入脊髓呼吸(膈)网络。AIH还增强了C-IN网络内的兴奋性并减少了抑制性连接。我们得出结论,C-INs是对AIH的呼吸、躯体和/或自主反应的一部分,并且脊髓固有可塑性可能有助于AIH后运动输出的持续增加。

相似文献

1
Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons.
J Neurosci. 2017 Aug 30;37(35):8349-8362. doi: 10.1523/JNEUROSCI.0992-17.2017. Epub 2017 Jul 27.
2
Coupling multielectrode array recordings with silver labeling of recording sites to study cervical spinal network connectivity.
J Neurophysiol. 2017 Mar 1;117(3):1014-1029. doi: 10.1152/jn.00638.2016. Epub 2016 Dec 14.
3
Mid-cervical interneuron networks following high cervical spinal cord injury.
Respir Physiol Neurobiol. 2020 Jan;271:103305. doi: 10.1016/j.resp.2019.103305. Epub 2019 Sep 22.
4
Midcervical neuronal discharge patterns during and following hypoxia.
J Neurophysiol. 2015 Apr 1;113(7):2091-101. doi: 10.1152/jn.00834.2014. Epub 2014 Dec 31.
5
Daily acute intermittent hypoxia enhances phrenic motor output and stimulus-evoked phrenic responses in rats.
J Neurophysiol. 2021 Sep 1;126(3):777-790. doi: 10.1152/jn.00112.2021. Epub 2021 Jul 14.
8
Circulatory control of phrenic motor plasticity.
Respir Physiol Neurobiol. 2019 Jul;265:19-23. doi: 10.1016/j.resp.2019.01.004. Epub 2019 Jan 11.

引用本文的文献

1
Diaphragm Muscle: A Pump That Can Not Fail.
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
2
Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury.
Cells. 2025 Feb 15;14(4):288. doi: 10.3390/cells14040288.
3
A cholinergic spinal pathway for the adaptive control of breathing.
bioRxiv. 2025 Jan 20:2025.01.20.633641. doi: 10.1101/2025.01.20.633641.
6
Cervical spinal cord hemisection impacts sigh and the respiratory reset in male rats.
Physiol Rep. 2024 Mar;12(5):e15973. doi: 10.14814/phy2.15973.
7
8
The severity of acute hypoxaemia determines distinct changes in intracortical and spinal neural circuits.
Exp Physiol. 2023 Sep;108(9):1203-1214. doi: 10.1113/EP091224. Epub 2023 Aug 7.
10
Targeting drug or gene delivery to the phrenic motoneuron pool.
J Neurophysiol. 2023 Jan 1;129(1):144-158. doi: 10.1152/jn.00432.2022. Epub 2022 Nov 23.

本文引用的文献

1
Shaping the Output of Lumbar Flexor Motoneurons by Sacral Neuronal Networks.
J Neurosci. 2017 Feb 1;37(5):1294-1311. doi: 10.1523/JNEUROSCI.2213-16.2016. Epub 2016 Dec 26.
2
Coupling multielectrode array recordings with silver labeling of recording sites to study cervical spinal network connectivity.
J Neurophysiol. 2017 Mar 1;117(3):1014-1029. doi: 10.1152/jn.00638.2016. Epub 2016 Dec 14.
3
Biostatistics Series Module 4: Comparing Groups - Categorical Variables.
Indian J Dermatol. 2016 Jul-Aug;61(4):385-92. doi: 10.4103/0019-5154.185700.
4
Respiratory neuroplasticity - Overview, significance and future directions.
Exp Neurol. 2017 Jan;287(Pt 2):144-152. doi: 10.1016/j.expneurol.2016.05.022. Epub 2016 May 18.
5
Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation.
Exp Neurol. 2017 Jan;287(Pt 2):130-136. doi: 10.1016/j.expneurol.2016.05.012. Epub 2016 May 13.
6
Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.
Exp Neurol. 2015 Nov;273:138-50. doi: 10.1016/j.expneurol.2015.08.011. Epub 2015 Aug 16.
7
Phrenic long-term facilitation requires PKCθ activity within phrenic motor neurons.
J Neurosci. 2015 May 27;35(21):8107-17. doi: 10.1523/JNEUROSCI.5086-14.2015.
8
Intermittent hypoxia and neurorehabilitation.
J Appl Physiol (1985). 2015 Dec 15;119(12):1455-65. doi: 10.1152/japplphysiol.00235.2015. Epub 2015 May 21.
9
Midcervical neuronal discharge patterns during and following hypoxia.
J Neurophysiol. 2015 Apr 1;113(7):2091-101. doi: 10.1152/jn.00834.2014. Epub 2014 Dec 31.
10
Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial.
Neurology. 2014 Jan 14;82(2):104-13. doi: 10.1212/01.WNL.0000437416.34298.43. Epub 2013 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验