Suppr超能文献

物理治疗期间患者运动表现评估的指标

Metrics for Performance Evaluation of Patient Exercises during Physical Therapy.

作者信息

Vakanski Aleksandar, Ferguson Jake M, Lee Stephen

机构信息

Industrial Technology, University of Idaho, Idaho Falls, ID, USA.

Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, USA.

出版信息

Int J Phys Med Rehabil. 2017 Jun;5(3). doi: 10.4172/2329-9096.1000403. Epub 2017 Apr 20.

Abstract

OBJECTIVE

The article proposes a set of metrics for evaluation of patient performance in physical therapy exercises.

METHODS

Taxonomy is employed that classifies the metrics into quantitative and qualitative categories, based on the level of abstraction of the captured motion sequences. Further, the quantitative metrics are classified into model-less and model-based metrics, in reference to whether the evaluation employs the raw measurements of patient performed motions, or whether the evaluation is based on a mathematical model of the motions. The reviewed metrics include root-mean square distance, Kullback Leibler divergence, log-likelihood, heuristic consistency, Fugl-Meyer Assessment, and similar.

RESULTS

The metrics are evaluated for a set of five human motions captured with a Kinect sensor.

CONCLUSION

The metrics can potentially be integrated into a system that employs machine learning for modelling and assessment of the consistency of patient performance in home-based therapy setting. Automated performance evaluation can overcome the inherent subjectivity in human performed therapy assessment, and it can increase the adherence to prescribed therapy plans, and reduce healthcare costs.

摘要

目的

本文提出了一套用于评估物理治疗练习中患者表现的指标。

方法

采用分类法,根据所捕获运动序列的抽象程度,将指标分为定量和定性两类。此外,参照评估是采用患者执行动作的原始测量值,还是基于动作的数学模型,将定量指标分为无模型指标和基于模型的指标。所审查的指标包括均方根距离、库尔贝克-莱布勒散度、对数似然、启发式一致性、Fugl-Meyer评估等。

结果

对用Kinect传感器捕获的一组五种人体动作的指标进行了评估。

结论

这些指标有可能集成到一个系统中,该系统利用机器学习对家庭治疗环境中患者表现的一致性进行建模和评估。自动化性能评估可以克服人工治疗评估中固有的主观性,提高对规定治疗计划的依从性,并降低医疗成本。

相似文献

1
Metrics for Performance Evaluation of Patient Exercises during Physical Therapy.物理治疗期间患者运动表现评估的指标
Int J Phys Med Rehabil. 2017 Jun;5(3). doi: 10.4172/2329-9096.1000403. Epub 2017 Apr 20.
4
A Deep Learning Framework for Assessing Physical Rehabilitation Exercises.深度学习框架用于评估物理康复运动。
IEEE Trans Neural Syst Rehabil Eng. 2020 Feb;28(2):468-477. doi: 10.1109/TNSRE.2020.2966249. Epub 2020 Jan 13.
9

引用本文的文献

1
Exercise quantification from single camera view markerless 3D pose estimation.基于单摄像头视图无标记3D姿态估计的运动量化
Heliyon. 2024 Mar 12;10(6):e27596. doi: 10.1016/j.heliyon.2024.e27596. eCollection 2024 Mar 30.
5
A review of computational approaches for evaluation of rehabilitation exercises.康复训练评估的计算方法综述
Comput Biol Med. 2020 Apr;119:103687. doi: 10.1016/j.compbiomed.2020.103687. Epub 2020 Mar 4.
6
A Deep Learning Framework for Assessing Physical Rehabilitation Exercises.深度学习框架用于评估物理康复运动。
IEEE Trans Neural Syst Rehabil Eng. 2020 Feb;28(2):468-477. doi: 10.1109/TNSRE.2020.2966249. Epub 2020 Jan 13.

本文引用的文献

6
Supervised autonomous robotic soft tissue surgery.监督式自主机器人软组织手术。
Sci Transl Med. 2016 May 4;8(337):337ra64. doi: 10.1126/scitranslmed.aad9398.
7
Applications of Deep Learning in Biomedicine.深度学习在生物医学中的应用。
Mol Pharm. 2016 May 2;13(5):1445-54. doi: 10.1021/acs.molpharmaceut.5b00982. Epub 2016 Mar 29.
10
Multi-Layer and Recursive Neural Networks for Metagenomic Classification.用于宏基因组分类的多层递归神经网络
IEEE Trans Nanobioscience. 2015 Sep;14(6):608-16. doi: 10.1109/TNB.2015.2461219. Epub 2015 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验