Suppr超能文献

从非临床图像中提取皮肤病变以进行黑色素瘤的外科切除。

Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma.

机构信息

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, USA.

出版信息

Int J Comput Assist Radiol Surg. 2017 Jun;12(6):1021-1030. doi: 10.1007/s11548-017-1567-8. Epub 2017 Mar 24.

Abstract

PURPOSE

Computerized prescreening of suspicious moles and lesions for malignancy is of great importance for assessing the need and the priority of the removal surgery. Detection can be done by images captured by standard cameras, which are more preferable due to low cost and availability. One important step in computerized evaluation is accurate detection of lesion's region, i.e., segmentation of an image into two regions as lesion and normal skin.

METHODS

In this paper, a new method based on deep neural networks is proposed for accurate extraction of a lesion region. The input image is preprocessed, and then, its patches are fed to a convolutional neural network. Local texture and global structure of the patches are processed in order to assign pixels to lesion or normal classes. A method for effective selection of training patches is proposed for more accurate detection of a lesion's border.

RESULTS

Our results indicate that the proposed method could reach the accuracy of 98.7% and the sensitivity of 95.2% in segmentation of lesion regions over the dataset of clinical images.

CONCLUSION

The experimental results of qualitative and quantitative evaluations demonstrate that our method can outperform other state-of-the-art algorithms exist in the literature.

摘要

目的

对可疑痣和病变进行计算机预筛查对于评估切除手术的必要性和优先级非常重要。可以通过标准摄像机拍摄的图像进行检测,由于成本低且易于获得,因此更可取。计算机评估的一个重要步骤是准确检测病变区域,即,将图像分割为病变和正常皮肤两个区域。

方法

本文提出了一种基于深度神经网络的新方法,用于准确提取病变区域。输入图像经过预处理,然后将其补丁输入到卷积神经网络中。处理补丁的局部纹理和全局结构,以便将像素分配给病变或正常类别。提出了一种有效的训练补丁选择方法,以更准确地检测病变边界。

结果

我们的结果表明,该方法在对临床图像数据集的病变区域分割中可以达到 98.7%的准确率和 95.2%的敏感性。

结论

定性和定量评估的实验结果表明,我们的方法可以优于文献中存在的其他最先进的算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验