Suppr超能文献

基于混合密度神经网络的物理治疗中人体运动的数学建模与评估

Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks.

作者信息

Vakanski A, Ferguson J M, Lee S

机构信息

Industrial Technology, University of Idaho, Idaho Falls, United States.

Center for Modeling Complex Interactions, University of Idaho, Moscow, United States.

出版信息

J Physiother Phys Rehabil. 2016 Dec;1(4). Epub 2016 Oct 11.

Abstract

OBJECTIVE

The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement.

METHODS

The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions.

RESULTS

The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method.

CONCLUSION

The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons.

摘要

目的

本拟议研究的目的是开发一种用于人体运动建模和评估的方法,这可能会使接受物理康复治疗(例如中风后或由于其他医疗状况)的患者受益。最终目标是让患者使用用于捕捉运动的传感系统进行居家康复锻炼,其中一种算法将检索患者锻炼的轨迹,通过将所执行的运动与规定运动的参考模型进行比较来进行数据分析,并将分析结果发送给患者的医生并给出改进建议。

方法

该建模方法采用人工神经网络,由循环神经元单元层和神经元单元层组成,用于估计人体运动序列内时空依赖性上的混合密度函数。输入数据是物理治疗师向患者规定的与某项锻炼相关的运动序列,并由运动捕捉系统记录。一个自动编码器子网用于降低所捕捉的人体运动序列的维度,辅以一个混合密度子网,用于使用高斯分布混合对运动数据进行概率建模。

结果

所提出的神经网络架构产生了一个用高斯密度函数混合表示的人体运动集模型。观察序列的平均对数似然被用作性能指标,以评估受试者相对于运动参考数据集的表现一致性。使用通过微软Kinect捕捉的公开可用人体运动数据集对所提出的方法进行验证。

结论

本文提出了一种用于人体运动建模和评估的新方法,在居家物理治疗和康复中具有潜在应用。所描述的方法利用机器学习和神经网络领域的最新进展,通过利用这些算法的表示能力来编码长时程上的非线性输入-输出依赖性,开发人体运动的参数模型。

相似文献

3
Metrics for Performance Evaluation of Patient Exercises during Physical Therapy.物理治疗期间患者运动表现评估的指标
Int J Phys Med Rehabil. 2017 Jun;5(3). doi: 10.4172/2329-9096.1000403. Epub 2017 Apr 20.
5
A Deep Learning Framework for Assessing Physical Rehabilitation Exercises.深度学习框架用于评估物理康复运动。
IEEE Trans Neural Syst Rehabil Eng. 2020 Feb;28(2):468-477. doi: 10.1109/TNSRE.2020.2966249. Epub 2020 Jan 13.

引用本文的文献

4
A review of computational approaches for evaluation of rehabilitation exercises.康复训练评估的计算方法综述
Comput Biol Med. 2020 Apr;119:103687. doi: 10.1016/j.compbiomed.2020.103687. Epub 2020 Mar 4.
5
A Deep Learning Framework for Assessing Physical Rehabilitation Exercises.深度学习框架用于评估物理康复运动。
IEEE Trans Neural Syst Rehabil Eng. 2020 Feb;28(2):468-477. doi: 10.1109/TNSRE.2020.2966249. Epub 2020 Jan 13.
9
Metrics for Performance Evaluation of Patient Exercises during Physical Therapy.物理治疗期间患者运动表现评估的指标
Int J Phys Med Rehabil. 2017 Jun;5(3). doi: 10.4172/2329-9096.1000403. Epub 2017 Apr 20.

本文引用的文献

4
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
9
On learning, representing, and generalizing a task in a humanoid robot.关于人形机器人中任务的学习、表示与泛化
IEEE Trans Syst Man Cybern B Cybern. 2007 Apr;37(2):286-98. doi: 10.1109/tsmcb.2006.886952.
10
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验