Suppr超能文献

在微柱阵列上原位生成人类脑类器官。

In situ generation of human brain organoids on a micropillar array.

机构信息

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

出版信息

Lab Chip. 2017 Aug 22;17(17):2941-2950. doi: 10.1039/c7lc00682a.

Abstract

Brain organoids derived from human induced pluripotent stem cells can recapitulate the early stages of brain development, representing a powerful in vitro system for modeling brain development and diseases. However, the existing methods for brain organoid formation often require time-consuming procedures, including the initial formation of embryoid bodies (EBs) from hiPSCs, and subsequent neural induction and differentiation companied by multi-steps of cell transfer and encapsulation in a 3D matrix. Herein, we propose a simple strategy to enable in situ formation of massive brain organoids from hiPSCs on a micropillar array without tedious manual procedures. The optimized micropillar configurations allow for controlled EB formation, neural induction and differentiation, and generation of functional human brain organoids in 3D culture on a single device. The generated brain organoids were examined to imitate brain organogenesis in vivo at early stages of gestation with specific features of neuronal differentiation, brain regionalization, and cortical organization. By combining microfabrication techniques with stem cells and developmental biology principles, the proposed method can greatly simplify brain organoid formation protocols as compared to conventional methods, overcoming the potential limitations of cell contamination, lower throughput and variance of organoid morphology. It can also provide a useful platform for the engineering of stem cell organoids with improved functions and extending their applications in developmental biology, drug testing and disease modeling.

摘要

人脑类器官可再现大脑早期发育过程,代表着用于模拟大脑发育和疾病的强大体外系统。然而,现有的人脑类器官形成方法通常需要耗时的步骤,包括从 hiPSC 初始形成类胚体 (EB),以及随后的神经诱导和分化,伴随着多步细胞转移和在 3D 基质中包封。在此,我们提出了一种简单的策略,可实现在无繁琐人工操作的情况下,在微柱阵列上原位形成大量人脑类器官。优化的微柱结构允许控制 EB 的形成、神经诱导和分化,并在单个装置上的 3D 培养中生成功能性人脑类器官。对生成的人脑类器官进行了检查,以模拟体内妊娠早期的脑器官发生,具有神经元分化、脑区域化和皮质组织的特定特征。通过将微制造技术与干细胞和发育生物学原理相结合,与传统方法相比,所提出的方法可以大大简化人脑类器官的形成方案,克服细胞污染、低通量和类器官形态变化的潜在限制。它还可以为具有改进功能的干细胞类器官的工程提供有用的平台,并扩展其在发育生物学、药物测试和疾病建模中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验