Suppr超能文献

一种用于理解肠上皮时空动态的分层贝叶斯模型。

A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium.

作者信息

Maclaren Oliver J, Parker Aimée, Pin Carmen, Carding Simon R, Watson Alastair J M, Fletcher Alexander G, Byrne Helen M, Maini Philip K

机构信息

Department of Engineering Science, University of Auckland, Auckland, New Zealand.

Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, United Kingdom.

出版信息

PLoS Comput Biol. 2017 Jul 28;13(7):e1005688. doi: 10.1371/journal.pcbi.1005688. eCollection 2017 Jul.

Abstract

Our work addresses two key challenges, one biological and one methodological. First, we aim to understand how proliferation and cell migration rates in the intestinal epithelium are related under healthy, damaged (Ara-C treated) and recovering conditions, and how these relations can be used to identify mechanisms of repair and regeneration. We analyse new data, presented in more detail in a companion paper, in which BrdU/IdU cell-labelling experiments were performed under these respective conditions. Second, in considering how to more rigorously process these data and interpret them using mathematical models, we use a probabilistic, hierarchical approach. This provides a best-practice approach for systematically modelling and understanding the uncertainties that can otherwise undermine the generation of reliable conclusions-uncertainties in experimental measurement and treatment, difficult-to-compare mathematical models of underlying mechanisms, and unknown or unobserved parameters. Both spatially discrete and continuous mechanistic models are considered and related via hierarchical conditional probability assumptions. We perform model checks on both in-sample and out-of-sample datasets and use them to show how to test possible model improvements and assess the robustness of our conclusions. We conclude, for the present set of experiments, that a primarily proliferation-driven model suffices to predict labelled cell dynamics over most time-scales.

摘要

我们的工作解决了两个关键挑战,一个是生物学方面的,一个是方法学方面的。首先,我们旨在了解在健康、受损(经阿糖胞苷处理)和恢复状态下,肠道上皮细胞的增殖和迁移速率之间的关系,以及如何利用这些关系来识别修复和再生机制。我们分析了新数据,这些数据在一篇配套论文中有更详细的介绍,其中在这些相应条件下进行了BrdU/IdU细胞标记实验。其次,在考虑如何更严格地处理这些数据并使用数学模型进行解释时,我们采用了一种概率性的分层方法。这为系统地建模和理解那些否则可能破坏可靠结论生成的不确定性提供了一种最佳实践方法——这些不确定性包括实验测量和处理中的不确定性、潜在机制的难以比较的数学模型,以及未知或未观察到的参数。我们考虑了空间离散和连续的机制模型,并通过分层条件概率假设将它们联系起来。我们对样本内和样本外数据集都进行了模型检验,并利用它们展示如何测试可能的模型改进以及评估我们结论的稳健性。对于当前这组实验,我们得出结论,一个主要由增殖驱动的模型足以在大多数时间尺度上预测标记细胞的动态变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/5550005/3e27da7baa86/pcbi.1005688.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验