Suppr超能文献

高特征频率的光聚合微图案克服趋化性排斥边界,从而引导神经突生长。

Photopolymerized micropatterns with high feature frequencies overcome chemorepulsive borders to direct neurite growth.

机构信息

Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA.

Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, IA, USA.

出版信息

J Tissue Eng Regen Med. 2018 Mar;12(3):e1392-e1403. doi: 10.1002/term.2527. Epub 2017 Nov 23.

Abstract

Developing and regenerating neurites respond to a variety of biophysical and biochemical cues in their micro-environment to reach target cells and establish appropriate synapses. Defining the hierarchal relationship of both types of cues to direct neurite growth carries broad significance for neural development, regeneration, and, in particular, engineering of neural prostheses that improve tissue integration with native neural networks. In this work, chemorepulsive biochemical borders are established on substrates with a range of surface microfeatures to determine the potential of physical cues to overcome conflicting biochemical cues. Physical micropatterns are fabricated using photomasking techniques to spatially control photoinitiation events of the polymerization. Temporal control of the reaction allows for generation of microfeatures with the same amplitude across a range of feature frequencies or periodicities. The micropatterned substrates are then modified with repulsive chemical borders between laminin and either EphA4-Fc or tenascin C that compete with the surface microfeatures to direct neurite growth. Behaviour of neurites from spiral ganglion and trigeminal neurons is characterized at biochemical borders as cross, turn, stop, or repel events. Both the chemical borders and physical patterns significantly influence neurite pathfinding. On unpatterned surfaces, most neurites that originate on laminin are deterred by the border with tenascin C or EphA4-Fc. Importantly, substrates with frequent micropattern features overcome the influence of the chemorepulsive border to dominate neurite trajectory. Designing prosthesis interfaces with appropriate surface features may allow for spatially organized neurite outgrowth in vivo even in the presence of conflicting biochemical cues in native target tissues.

摘要

神经突的发育和再生对其微环境中的各种生物物理和生化线索做出反应,以到达靶细胞并建立适当的突触。确定这两种类型的线索的层次关系,以指导神经突的生长,这对神经发育、再生具有广泛的意义,特别是对改善与天然神经网络的组织整合的神经假体的工程设计具有重要意义。在这项工作中,在具有一系列表面微观特征的基底上建立了化学排斥性的生化边界,以确定物理线索克服相互冲突的生化线索的潜力。使用光掩模技术制造物理微图案,以空间控制聚合的光引发事件。反应的时间控制允许在一系列特征频率或周期性内生成具有相同幅度的微特征。然后,使用层粘连蛋白与 EphA4-Fc 或 tenascin C 之间的排斥性化学边界对微图案化基底进行修饰,这些边界与表面微特征竞争以指导神经突生长。螺旋神经节和三叉神经神经元的神经突的行为在生化边界处表现为交叉、转弯、停止或排斥事件。化学边界和物理图案都显著影响神经突的寻迹。在无图案表面上,大多数起源于层粘连蛋白的神经突被 tenascin C 或 EphA4-Fc 的边界所阻止。重要的是,具有频繁微图案特征的基底克服了化学排斥边界的影响,从而主导了神经突轨迹。设计具有适当表面特征的假体界面,即使在天然靶组织中存在相互冲突的生化线索,也可能允许体内空间组织的神经突生长。

相似文献

1
Photopolymerized micropatterns with high feature frequencies overcome chemorepulsive borders to direct neurite growth.
J Tissue Eng Regen Med. 2018 Mar;12(3):e1392-e1403. doi: 10.1002/term.2527. Epub 2017 Nov 23.
2
Material stiffness effects on neurite alignment to photopolymerized micropatterns.
Biomacromolecules. 2014 Oct 13;15(10):3717-27. doi: 10.1021/bm501019s. Epub 2014 Sep 29.
3
Interaction of micropatterned topographical and biochemical cues to direct neurite growth from spiral ganglion neurons.
Hear Res. 2021 Sep 15;409:108315. doi: 10.1016/j.heares.2021.108315. Epub 2021 Jul 21.
4
Neural pathfinding on uni- and multidirectional photopolymerized micropatterns.
ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11265-76. doi: 10.1021/am501622a. Epub 2014 Jul 8.
5
Tuning Surface and Topographical Features to Investigate Competitive Guidance of Spiral Ganglion Neurons.
ACS Appl Mater Interfaces. 2017 Sep 20;9(37):31488-31496. doi: 10.1021/acsami.7b09258. Epub 2017 Sep 5.
6
Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth.
Biomaterials. 2013 Jan;34(1):42-54. doi: 10.1016/j.biomaterials.2012.09.053. Epub 2012 Oct 13.
7
Photopolymerized Microfeatures Guide Adult Spiral Ganglion and Dorsal Root Ganglion Neurite Growth.
Otol Neurotol. 2018 Jan;39(1):119-126. doi: 10.1097/MAO.0000000000001622.

引用本文的文献

2
Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance.
Front Neurosci. 2024 Jul 24;18:1425226. doi: 10.3389/fnins.2024.1425226. eCollection 2024.
4
Interaction of micropatterned topographical and biochemical cues to direct neurite growth from spiral ganglion neurons.
Hear Res. 2021 Sep 15;409:108315. doi: 10.1016/j.heares.2021.108315. Epub 2021 Jul 21.
5
Cochlear implants and other inner ear prostheses: today and tomorrow.
Curr Opin Physiol. 2020 Dec;18:49-55. doi: 10.1016/j.cophys.2020.08.001. Epub 2020 Aug 14.
6
Tuning Surface and Topographical Features to Investigate Competitive Guidance of Spiral Ganglion Neurons.
ACS Appl Mater Interfaces. 2017 Sep 20;9(37):31488-31496. doi: 10.1021/acsami.7b09258. Epub 2017 Sep 5.

本文引用的文献

2
Material stiffness effects on neurite alignment to photopolymerized micropatterns.
Biomacromolecules. 2014 Oct 13;15(10):3717-27. doi: 10.1021/bm501019s. Epub 2014 Sep 29.
3
Neural pathfinding on uni- and multidirectional photopolymerized micropatterns.
ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11265-76. doi: 10.1021/am501622a. Epub 2014 Jul 8.
5
Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth.
Biomaterials. 2013 Jan;34(1):42-54. doi: 10.1016/j.biomaterials.2012.09.053. Epub 2012 Oct 13.
7
Influence of cAMP and protein kinase A on neurite length from spiral ganglion neurons.
Hear Res. 2012 Jan;283(1-2):33-44. doi: 10.1016/j.heares.2011.11.010. Epub 2011 Dec 3.
8
Micropatterned methacrylate polymers direct spiral ganglion neurite and Schwann cell growth.
Hear Res. 2011 Aug;278(1-2):96-105. doi: 10.1016/j.heares.2011.05.004. Epub 2011 May 18.
9
Cochlear infrastructure for electrical hearing.
Hear Res. 2011 Nov;281(1-2):65-73. doi: 10.1016/j.heares.2011.05.002. Epub 2011 May 14.
10
Nerve maintenance and regeneration in the damaged cochlea.
Hear Res. 2011 Nov;281(1-2):56-64. doi: 10.1016/j.heares.2011.04.019. Epub 2011 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验