Suppr超能文献

单向和多向光聚合微图案上的神经路径寻找

Neural pathfinding on uni- and multidirectional photopolymerized micropatterns.

作者信息

Tuft Bradley W, Xu Linjing, White Scott P, Seline Alison E, Erwood Andrew M, Hansen Marlan R, Guymon C Allan

机构信息

Department of Chemical and Biochemical Engineering, University of Iowa , Iowa City, Iowa 52242, United States, United States.

出版信息

ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11265-76. doi: 10.1021/am501622a. Epub 2014 Jul 8.

Abstract

Overcoming signal resolution barriers of neural prostheses, such as the commercially available cochlear impant (CI) or the developing retinal implant, will likely require spatial control of regenerative neural elements. To rationally design materials that direct nerve growth, it is first necessary to determine pathfinding behavior of de novo neurite growth from prosthesis-relevant cells such as spiral ganglion neurons (SGNs) in the inner ear. Accordingly, in this work, repeating 90° turns were fabricated as multidirectional micropatterns to determine SGN neurite turning capability and pathfinding. Unidirectional micropatterns and unpatterned substrates are used as comparisons. Spiral ganglion Schwann cell alignment (SGSC) is also examined on each surface type. Micropatterns are fabricated using the spatial reaction control inherent to photopolymerization with photomasks that have either parallel line spacing gratings for unidirectional patterns or repeating 90° angle steps for multidirectional patterns. Feature depth is controlled by modulating UV exposure time by shuttering the light source at given time increments. Substrate topography is characterized by white light interferometry and scanning electron microscopy (SEM). Both pattern types exhibit features that are 25 μm in width and 7.4 ± 0.7 μm in depth. SGN neurites orient randomly on unpatterned photopolymer controls, align and consistently track unidirectional patterns, and are substantially influenced by, but do not consistently track, multidirectional turning cues. Neurite lengths are 20% shorter on multidirectional substrates compared to unidirectional patterns while neurite branching and microfeature crossing events are significantly higher. For both pattern types, the majority of the neurite length is located in depressed surface features. Developing methods to understand neural pathfinding and to guide de novo neurite growth to specific stimulatory elements will enable design of innovative biomaterials that improve functional outcomes of devices that interface with the nervous system.

摘要

克服神经假体的信号分辨率障碍,如市售的人工耳蜗(CI)或正在研发的视网膜植入物,可能需要对再生神经元件进行空间控制。为了合理设计引导神经生长的材料,首先需要确定内耳中与假体相关的细胞(如螺旋神经节神经元(SGN))新生神经突生长的寻路行为。因此,在这项工作中,制作了重复90°转弯的多方向微图案,以确定SGN神经突的转弯能力和寻路情况。单向微图案和无图案的基质用作对照。还在每种表面类型上检查了螺旋神经节雪旺细胞排列(SGSC)。使用光聚合固有的空间反应控制和光掩模制作微图案,光掩模具有用于单向图案的平行线间距光栅或用于多方向图案的重复90°角步长。通过以给定的时间增量关闭光源来调制紫外线曝光时间,从而控制特征深度。通过白光干涉测量法和扫描电子显微镜(SEM)对基底形貌进行表征。两种图案类型的特征宽度均为25μm,深度为7.4±0.7μm。SGN神经突在无图案的光聚合物对照上随机定向,与单向图案对齐并持续跟踪,并且受到多方向转弯线索的显著影响,但并不持续跟踪。与单向图案相比,多方向基底上的神经突长度短20%,而神经突分支和微特征交叉事件显著更高。对于两种图案类型,大部分神经突长度位于凹陷的表面特征中。开发理解神经寻路并将新生神经突生长引导至特定刺激元件的方法,将有助于设计创新的生物材料,从而改善与神经系统接口的设备的功能结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4da/4215840/5e54fc97e25e/am-2014-01622a_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验