Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy.
Nat Chem. 2017 Aug;9(8):772-778. doi: 10.1038/nchem.2818. Epub 2017 Jul 17.
In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity-step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.
在含氧光合作用中,光捕获受到调节以安全地耗散多余的能量并防止有害光产物的形成。众所周知,这种调节对于适应环境是必要的,但分子机制尚不清楚。一个挑战是,整体实验平均了活跃和耗散的行为,从而无法确定不同的状态。在这里,我们使用单分子光谱学来揭示与光相关的应激相关 1 号捕光复合物(LHCSR1)蛋白的光保护状态和动力学,该蛋白负责藻类和苔藓中的耗散。我们发现了两种耗散状态的存在。我们发现,其中一种状态是由 pH 激活的,另一种是由类胡萝卜素组成激活的,而不同的蛋白质动力学调节这些状态。这两种状态使生物体能够分别响应太阳强度的两种间歇性变化(云和阴影)和斜坡变化(日出)。我们的发现揭示了光保护耗散的关键控制机制,这对于提高生物质产量和开发稳健的太阳能设备具有重要意义。