Suppr超能文献

基于体细胞评分和牛奶中红外光谱预测奶牛急性和慢性乳腺炎

Prediction of Acute and Chronic Mastitis in Dairy Cows Based on Somatic Cell Score and Mid-Infrared Spectroscopy of Milk.

作者信息

Rienesl Lisa, Khayatzdadeh Negar, Köck Astrid, Egger-Danner Christa, Gengler Nicolas, Grelet Clément, Dale Laura Monica, Werner Andreas, Auer Franz-Josef, Leblois Julie, Sölkner Johann

机构信息

Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, 1180 Vienna, Austria.

ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria.

出版信息

Animals (Basel). 2022 Jul 18;12(14):1830. doi: 10.3390/ani12141830.

Abstract

Monitoring for mastitis on dairy farms is of particular importance, as it is one of the most prevalent bovine diseases. A commonly used indicator for mastitis monitoring is somatic cell count. A supplementary tool to predict mastitis risk may be mid-infrared (MIR) spectroscopy of milk. Because bovine health status can affect milk composition, this technique is already routinely used to determine standard milk components. The aim of the present study was to compare the performance of models to predict clinical mastitis based on MIR spectral data and/or somatic cell count score (SCS), and to explore differences of prediction accuracies for acute and chronic clinical mastitis diagnoses. Test-day data of the routine Austrian milk recording system and diagnosis data of its health monitoring, from 59,002 cows of the breeds Fleckvieh (dual purpose Simmental), Holstein Friesian and Brown Swiss, were used. Test-day records within 21 days before and 21 days after a mastitis diagnosis were defined as mastitis cases. Three different models (MIR, SCS, MIR + SCS) were compared, applying Partial Least Squares Discriminant Analysis. Results of external validation in the overall time window (-/+21 days) showed area under receiver operating characteristic curves (AUC) of 0.70 when based only on MIR, 0.72 when based only on SCS, and 0.76 when based on both. Considering as mastitis cases only the test-day records within 7 days after mastitis diagnosis, the corresponding areas under the curve were 0.77, 0.83 and 0.85. Hence, the model combining MIR spectral data and SCS was performing best. Mastitis probabilities derived from the prediction models are potentially valuable for routine mastitis monitoring for farmers, as well as for the genetic evaluation of the trait udder health.

摘要

奶牛场乳腺炎监测尤为重要,因为它是最常见的牛病之一。乳腺炎监测常用指标是体细胞计数。预测乳腺炎风险的辅助工具可能是牛奶的中红外(MIR)光谱分析。由于牛的健康状况会影响牛奶成分,该技术已常规用于测定标准牛奶成分。本研究的目的是比较基于MIR光谱数据和/或体细胞计数评分(SCS)预测临床乳腺炎的模型性能,并探讨急性和慢性临床乳腺炎诊断预测准确性的差异。使用了奥地利常规牛奶记录系统的测定日数据及其健康监测诊断数据,涉及弗莱维赫牛(兼用西门塔尔牛)、荷斯坦弗里生牛和瑞士褐牛三个品种的59,002头奶牛。乳腺炎诊断前21天和诊断后21天内的测定日记录被定义为乳腺炎病例。应用偏最小二乘判别分析比较了三种不同模型(MIR、SCS、MIR + SCS)。在整个时间窗口(-/+21天)的外部验证结果显示,仅基于MIR时,受试者操作特征曲线下面积(AUC)为0.70;仅基于SCS时为0.72;基于两者时为0.76。仅将乳腺炎诊断后7天内的测定日记录视为乳腺炎病例时,相应曲线下面积分别为0.77、0.83和0.85。因此,结合MIR光谱数据和SCS的模型表现最佳。预测模型得出的乳腺炎概率对奶农的常规乳腺炎监测以及乳房健康性状的遗传评估可能具有潜在价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验