Suppr超能文献

适当的数据质量检查可提高从牛奶中红外光谱预测值的可靠性。

Appropriate Data Quality Checks Improve the Reliability of Values Predicted from Milk Mid-Infrared Spectra.

作者信息

Zhang Lei, Li Chunfang, Dehareng Frédéric, Grelet Clément, Colinet Frédéric, Gengler Nicolas, Brostaux Yves, Soyeurt Hélène

机构信息

TERRA Teaching and Research Centre, University of Liège-Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium.

Hebei Livestock Breeding Station, Shijiazhuang 050000, China.

出版信息

Animals (Basel). 2021 Feb 18;11(2):533. doi: 10.3390/ani11020533.

Abstract

The use of abnormal milk mid-infrared (MIR) spectrum strongly affects prediction quality, even if the prediction equations used are accurate. So, this record must be detected after or before the prediction process to avoid erroneous spectral extrapolation or the use of poor-quality spectral data by dairy herd improvement (DHI) organizations. For financial or practical reasons, adapting the quality protocol currently used to improve the accuracy of fat and protein contents is unfeasible. This study proposed three different statistical methods that would be easy to implement by DHI organizations to solve this issue: the deletion of 1% of the extreme high and low predictive values (M1), the deletion of records based on the Global-H (GH) distance (M2), and the deletion of records based on the absolute fat residual value (M3). Additionally, the combinations of these three methods were investigated. A total of 346,818 milk samples were analyzed by MIR spectrometry to predict the contents of fat, protein, and fatty acids. Then, the same traits were also predicted externally using their corresponded standardized MIR spectra. The interest in cleaning procedures was assessed by estimating the root mean square differences (RMSDs) between those internal and external predicted phenotypes. All methods allowed for a decrease in the RMSD, with a gain ranging from 0.32% to 41.39%. Based on the obtained results, the "M1 and M2" combination should be preferred to be more parsimonious in the data loss, as it had the higher ratio of RMSD gain to data loss. This method deleted the records based on the 2% extreme predictions and a GH threshold set at 5. However, to ensure the lowest RMSD, the "M2 or M3" combination, considering a GH threshold of 5 and an absolute fat residual difference set at 0.30 g/dL of milk, was the most relevant. Both combinations involved M2 confirming the high interest of calculating the GH distance for all samples to predict. However, if it is impossible to estimate the GH distance due to a lack of relevant information to compute this statistical parameter, the obtained results recommended the use of M1 combined with M3. The limitation used in M3 must be adapted by the DHI, as this will depend on the spectral data and the equation used. The methodology proposed in this study can be generalized for other MIR-based phenotypes.

摘要

即使所使用的预测方程准确无误,异常牛奶中红外(MIR)光谱的使用仍会严重影响预测质量。因此,必须在预测过程之前或之后检测此记录,以避免错误的光谱外推或奶牛群改良(DHI)组织使用质量不佳的光谱数据。出于财务或实际原因,调整当前用于提高脂肪和蛋白质含量准确性的质量协议并不可行。本研究提出了三种不同的统计方法,DHI组织易于实施以解决此问题:删除1%的极高和极低预测值(M1),基于全局H(GH)距离删除记录(M2),以及基于绝对脂肪残差值删除记录(M3)。此外,还研究了这三种方法的组合。通过MIR光谱法对总共346,818份牛奶样本进行分析,以预测脂肪、蛋白质和脂肪酸的含量。然后,还使用相应的标准化MIR光谱对相同性状进行外部预测。通过估计内部和外部预测表型之间的均方根差异(RMSD)来评估清洗程序的效果。所有方法均能降低RMSD,降幅在0.32%至41.39%之间。根据所得结果,“M1和M2”组合在数据损失方面更为简约,应优先选择,因为其RMSD增益与数据损失的比率更高。该方法基于2%的极端预测和设定为5的GH阈值删除记录。然而,为确保最低的RMSD,考虑GH阈值为5且绝对脂肪残留差异设定为0.30 g/dL牛奶的“MII或M3”组合最为合适。两种组合都涉及M2,这证实了计算所有样本的GH距离对于预测的高度重要性。但是,如果由于缺乏计算此统计参数的相关信息而无法估计GH距离,所得结果建议使用M1与M3的组合。M3中使用的限制必须由DHI进行调整,因为这将取决于光谱数据和所使用的方程。本研究中提出的方法可推广到其他基于MIR的表型。

相似文献

5
Genetic parameters of dairy cow energy intake and body energy status predicted using mid-infrared spectrometry of milk.
J Dairy Sci. 2015 Feb;98(2):1310-20. doi: 10.3168/jds.2014-8892. Epub 2014 Dec 12.
7
Classifying the fertility of dairy cows using milk mid-infrared spectroscopy.
J Dairy Sci. 2019 Nov;102(11):10460-10470. doi: 10.3168/jds.2019-16412. Epub 2019 Sep 5.
8
Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows.
J Dairy Sci. 2018 Jul;101(7):5878-5889. doi: 10.3168/jds.2017-13997. Epub 2018 Apr 19.
9
On the role of mid-infrared predicted phenotypes in fertility and health dairy breeding programs.
J Dairy Sci. 2016 May;99(5):4080-4094. doi: 10.3168/jds.2015-10087. Epub 2015 Dec 24.

引用本文的文献

本文引用的文献

1
Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions.
Methods. 2021 Feb;186:97-111. doi: 10.1016/j.ymeth.2020.07.012. Epub 2020 Aug 4.
2
Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation.
J Dairy Sci. 2020 May;103(5):4435-4445. doi: 10.3168/jds.2019-17910. Epub 2020 Mar 5.
3
Diagnosing the pregnancy status of dairy cows: How useful is milk mid-infrared spectroscopy?
J Dairy Sci. 2020 Apr;103(4):3264-3274. doi: 10.3168/jds.2019-17473. Epub 2020 Feb 7.
4
Classifying the fertility of dairy cows using milk mid-infrared spectroscopy.
J Dairy Sci. 2019 Nov;102(11):10460-10470. doi: 10.3168/jds.2019-16412. Epub 2019 Sep 5.
5
Milk fatty acids profiles and milk production from dairy cows fed different forage quality diets.
Anim Nutr. 2016 Dec;2(4):329-333. doi: 10.1016/j.aninu.2016.08.008. Epub 2016 Aug 21.
7
Dairy farmers with larger herd sizes adopt more precision dairy technologies.
J Dairy Sci. 2018 Jun;101(6):5466-5473. doi: 10.3168/jds.2017-13324. Epub 2018 Mar 7.
8
Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models.
J Dairy Sci. 2017 Oct;100(10):7910-7921. doi: 10.3168/jds.2017-12720. Epub 2017 Jul 26.
10
Capitalizing on fine milk composition for breeding and management of dairy cows.
J Dairy Sci. 2016 May;99(5):4071-4079. doi: 10.3168/jds.2015-10140. Epub 2016 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验