Gundry Michael C, Dever Daniel P, Yudovich David, Bauer Daniel E, Haas Simon, Wilkinson Adam C, Singbrant Sofie
Department of Molecular and Human Genetics, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX.
Department of Pediatrics, Stanford University, Stanford, CA.
Exp Hematol. 2017 Oct;54:4-11. doi: 10.1016/j.exphem.2017.07.006. Epub 2017 Jul 27.
The hematopoietic system is responsible for transporting oxygen and nutrients, fighting infections, and repairing tissue damage. Hematopoietic system dysfunction therefore causes a range of serious health consequences. Lifelong hematopoiesis is maintained by repopulating multipotent hematopoietic stem cells (HSCs) that replenish shorter-lived, mature blood cell types. A prokaryotic mechanism of immunity, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system, has been recently "repurposed" to mutate mammalian genomes efficiently and in a sequence-specific manner. The application of this genome-editing technology to hematology has afforded new approaches for functional genomics and even the prospect of "correcting" dysfunctional HSCs in the treatment of serious genetic hematological diseases. In this Perspective, we provide an overview of three recent CRISPR/Cas9 methods in hematology: gene disruption, gene targeting, and saturating mutagenesis. We also summarize the technical considerations and advice provided during the May 2017 International Society of Experimental Hematology New Investigator Committee webinar on the same topic.
造血系统负责输送氧气和营养物质、抵抗感染以及修复组织损伤。因此,造血系统功能障碍会导致一系列严重的健康后果。终身造血是由能够自我更新的多能造血干细胞(HSCs)维持的,这些干细胞可补充寿命较短的成熟血细胞类型。一种原核免疫机制——成簇规律间隔短回文重复序列(CRISPR)/Cas9核酸酶系统,最近已被“重新利用”,以高效且序列特异性的方式对哺乳动物基因组进行突变。这种基因组编辑技术在血液学中的应用为功能基因组学提供了新方法,甚至为治疗严重遗传性血液疾病时“纠正”功能失调的造血干细胞带来了希望。在这篇观点文章中,我们概述了血液学中最近的三种CRISPR/Cas9方法:基因破坏、基因靶向和饱和诱变。我们还总结了2017年5月国际实验血液学会新研究员委员会关于同一主题的网络研讨会上提供的技术考量和建议。