Suppr超能文献

鉴定与四个欧洲国家成年人富含多酚食物摄入相关的尿多酚代谢物模式。

Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries.

机构信息

Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.

Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.

出版信息

Nutrients. 2017 Jul 25;9(8):796. doi: 10.3390/nu9080796.

Abstract

We identified urinary polyphenol metabolite patterns by a novel algorithm that combines dimension reduction and variable selection methods to explain polyphenol-rich food intake, and compared their respective performance with that of single biomarkers in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. The study included 475 adults from four European countries (Germany, France, Italy, and Greece). Dietary intakes were assessed with 24-h dietary recalls (24-HDR) and dietary questionnaires (DQ). Thirty-four polyphenols were measured by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS-MS) in 24-h urine. Reduced rank regression-based variable importance in projection (RRR-VIP) and least absolute shrinkage and selection operator (LASSO) methods were used to select polyphenol metabolites. Reduced rank regression (RRR) was then used to identify patterns in these metabolites, maximizing the explained variability in intake of pre-selected polyphenol-rich foods. The performance of RRR models was evaluated using internal cross-validation to control for over-optimistic findings from over-fitting. High performance was observed for explaining recent intake (24-HDR) of red wine ( = 0.65; AUC = 89.1%), coffee ( = 0.51; AUC = 89.1%), and olives ( = 0.35; AUC = 82.2%). These metabolite patterns performed better or equally well compared to single polyphenol biomarkers. Neither metabolite patterns nor single biomarkers performed well in explaining habitual intake (as reported in the DQ) of polyphenol-rich foods. This proposed strategy of biomarker pattern identification has the potential of expanding the currently still limited list of available dietary intake biomarkers.

摘要

我们通过一种新算法确定了尿多酚代谢产物模式,该算法结合了降维和变量选择方法,以解释富含多酚的食物摄入,并将其与欧洲癌症前瞻性调查和营养研究(EPIC)中的单一生物标志物进行了比较。该研究包括来自四个欧洲国家(德国、法国、意大利和希腊)的 475 名成年人。膳食摄入量通过 24 小时膳食回忆(24-HDR)和膳食问卷(DQ)进行评估。34 种多酚通过超高效液相色谱-电喷雾电离串联质谱(UPLC-ESI-MS-MS)在 24 小时尿液中进行测量。基于降秩回归的变量重要性投影(RRR-VIP)和最小绝对收缩和选择算子(LASSO)方法用于选择多酚代谢物。然后,使用降秩回归(RRR)来识别这些代谢物中的模式,最大限度地解释预先选择的富含多酚的食物的摄入变化。使用内部交叉验证来控制过度拟合的过度乐观发现,评估 RRR 模型的性能。最近观察到解释红葡萄酒( = 0.65;AUC = 89.1%)、咖啡( = 0.51;AUC = 89.1%)和橄榄( = 0.35;AUC = 82.2%)摄入的能力表现良好。与单个多酚生物标志物相比,这些代谢产物模式表现更好或同样好。代谢产物模式和单个生物标志物都不能很好地解释富含多酚的食物的习惯性摄入(如 DQ 中报告的)。这种生物标志物模式识别策略具有扩展当前仍然有限的可用饮食摄入生物标志物列表的潜力。

相似文献

2
Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries.
Am J Clin Nutr. 2015 Oct;102(4):905-13. doi: 10.3945/ajcn.114.101881. Epub 2015 Aug 12.
3
Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study.
Eur J Nutr. 2016 Jun;55(4):1359-75. doi: 10.1007/s00394-015-0950-x. Epub 2015 Jun 17.
10
The relationship between urinary polyphenol metabolites and dietary polyphenol intakes in young adults.
Br J Nutr. 2022 Feb 28;127(4):589-598. doi: 10.1017/S0007114521001343. Epub 2021 Apr 26.

引用本文的文献

1
Development of a (Poly)phenol Metabolic Signature for Assessing (Poly)phenol-Rich Dietary Patterns.
J Agric Food Chem. 2024 Jun 12;72(23):13439-13450. doi: 10.1021/acs.jafc.4c00959. Epub 2024 Jun 3.
2
Exploring Human Metabolome after Wine Intake-A Review.
Molecules. 2023 Nov 15;28(22):7616. doi: 10.3390/molecules28227616.
3
Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses.
Foods. 2022 Aug 6;11(15):2355. doi: 10.3390/foods11152355.
4
Sources of Variation in Food-Related Metabolites during Pregnancy.
Nutrients. 2022 Jun 16;14(12):2503. doi: 10.3390/nu14122503.
6
Nutritional Metabolomics and the Classification of Dietary Biomarker Candidates: A Critical Review.
Adv Nutr. 2021 Dec 1;12(6):2333-2357. doi: 10.1093/advances/nmab054.
7
A systematic review to identify biomarkers of intake for fermented food products.
Genes Nutr. 2021 Apr 21;16(1):5. doi: 10.1186/s12263-021-00686-4.
10
Effects of Polyphenol-Rich Foods on Human Health.
Nutrients. 2018 Aug 14;10(8):1089. doi: 10.3390/nu10081089.

本文引用的文献

2
A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations.
Mol Nutr Food Res. 2017 Apr;61(4). doi: 10.1002/mnfr.201600930. Epub 2017 Feb 7.
5
Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database.
Mol Nutr Food Res. 2016 Jan;60(1):203-11. doi: 10.1002/mnfr.201500435. Epub 2015 Oct 15.
6
Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries.
Am J Clin Nutr. 2015 Oct;102(4):905-13. doi: 10.3945/ajcn.114.101881. Epub 2015 Aug 12.
7
Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study.
Eur J Nutr. 2016 Jun;55(4):1359-75. doi: 10.1007/s00394-015-0950-x. Epub 2015 Jun 17.
10
The food metabolome: a window over dietary exposure.
Am J Clin Nutr. 2014 Jun;99(6):1286-308. doi: 10.3945/ajcn.113.076133. Epub 2014 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验