Chen Liyu, Huang Binbin, Qiu Xuan, Wang Xi, Luque Rafael, Li Yingwei
School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China . Email:
Departamento de Química Orgánica , Universidad de Córdoba , Edif. Marie Curie, Ctra Nnal IV-A, Km 396 , E14014 , Córdoba , Spain . Email:
Chem Sci. 2016 Jan 1;7(1):228-233. doi: 10.1039/c5sc02925b. Epub 2015 Sep 23.
The possibility of using inner cavities within metal-organic frameworks (MOFs) as templates for the fabrication of tiny metal nanoparticles (NPs) was attempted in this work. An unprecedented design of Pd@Ag core-shell NPs on MOFs a seed mediated growth strategy is reported and attributed to the presence of activated physisorbed hydrogen atoms on embedded Pd NPs as reducing agents to selectively direct the deposition of Ag onto Pd while minimizing the Ag self-nucleation. The obtained Pd@Ag core-shell NPs exhibited a significant increase in selectivity in the partial hydrogenation of phenylacetylene as compared to their monometallic counterparts, due to the surface dilution and electron modification of the surface Pd sites by Ag deposition. Pd@Ag NPs also possessed an unprecedented high stability and recyclability in the catalytic reactions, related to the nano-confinement effect and the strong metal-support interaction offered by the MOF framework.
本工作尝试了利用金属有机框架(MOF)内部的空腔作为模板来制备微小金属纳米颗粒(NP)的可能性。报道了一种在MOF上制备Pd@Ag核壳NP的前所未有的设计——种子介导生长策略,这归因于嵌入的Pd NP上存在活化的物理吸附氢原子作为还原剂,以选择性地将Ag沉积引导到Pd上,同时使Ag自核化最小化。与单金属对应物相比,所获得的Pd@Ag核壳NP在苯乙炔的部分加氢反应中表现出选择性的显著提高,这是由于Ag沉积导致表面Pd位点的表面稀释和电子修饰。Pd@Ag NP在催化反应中还具有前所未有的高稳定性和可回收性,这与MOF框架提供的纳米限域效应和强金属-载体相互作用有关。