Suppr超能文献

三七中PnbHLH1转录因子的分子克隆与特性分析

Molecular Cloning and Characterization of PnbHLH1 Transcription Factor in Panax notoginseng.

作者信息

Zhang Xiang, Ge Feng, Deng Bing, Shah Taif, Huang Zhuangjia, Liu Diqiu, Chen Chaoyin

机构信息

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.

出版信息

Molecules. 2017 Jul 29;22(8):1268. doi: 10.3390/molecules22081268.

Abstract

has been extensively used as a traditional Chinese medicine. In the current study, molecular cloning and characterization of PnbHLH1 transcription factor were explored in . The full length of the gene obtained by splicing was 1430 bp, encoding 321 amino acids. Prokaryotic expression vector was constructed and transferred into the prokaryotic expression strain. An electrophoretic mobility shift assay of PnbHLH1 protein binding to E-box cis-acting elements verified that PnbHLH1 belonged to the bHLH class transcription factor which could interact with the promoter region of the E-box core sequence. The expression levels of key genes involved in the biosynthesis of triterpenoid saponins in transgenic cells were higher than those in the wild cells. Similarly, the total saponin contents were increased in the transgenic cell lines compared with the wild cell lines. Such results suggest that the transcription factor is a positive regulator in the biosynthesis of triterpenoid saponins in .

摘要

已被广泛用作传统中药。在当前研究中,对PnbHLH1转录因子进行了分子克隆和特性分析。通过拼接获得的该基因全长为1430 bp,编码321个氨基酸。构建了原核表达载体并将其转入原核表达菌株。PnbHLH1蛋白与E-box顺式作用元件结合的电泳迁移率变动分析证实,PnbHLH1属于bHLH类转录因子,可与E-box核心序列的启动子区域相互作用。转基因细胞中三萜皂苷生物合成相关关键基因的表达水平高于野生细胞。同样,与野生细胞系相比,转基因细胞系中的总皂苷含量增加。这些结果表明,该转录因子是三萜皂苷生物合成中的正调控因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/422c/6152055/ac4f745001cb/molecules-22-01268-g001.jpg

相似文献

1
Molecular Cloning and Characterization of PnbHLH1 Transcription Factor in Panax notoginseng.
Molecules. 2017 Jul 29;22(8):1268. doi: 10.3390/molecules22081268.
4
Oleanane-Type Saponins Biosynthesis in Panax notoginseng via Transformation of β-Amyrin Synthase Gene from Panax japonicus.
J Agric Food Chem. 2019 Feb 20;67(7):1982-1989. doi: 10.1021/acs.jafc.8b07183. Epub 2019 Feb 11.
8
Structural and interactions analysis of a transcription factor PnMYB2 in Panax notoginseng.
J Plant Physiol. 2022 Aug;275:153756. doi: 10.1016/j.jplph.2022.153756. Epub 2022 Jun 24.
9
PnNAC2 promotes the biosynthesis of Panax notoginseng saponins and induces early flowering.
Plant Cell Rep. 2024 Feb 20;43(3):73. doi: 10.1007/s00299-024-03152-8.
10
Construct a gene-to-metabolite network to screen the key genes of triterpene saponin biosynthetic pathway in Panax notoginseng.
Biotechnol Appl Biochem. 2018 Mar;65(2):119-127. doi: 10.1002/bab.1580. Epub 2017 Sep 12.

引用本文的文献

1
Positive regulation Asperosaponin VI accumulation by DaERF9 through JA signaling in Dipsacus asper.
BMC Plant Biol. 2025 May 9;25(1):612. doi: 10.1186/s12870-025-06576-w.
3
Genome-Wide Identification and Expression Profile of () Gene Family in L.
Int J Mol Sci. 2025 Jan 18;26(2):798. doi: 10.3390/ijms26020798.
4
: panoramagram of phytochemical and pharmacological properties, biosynthesis, and regulation and production of ginsenosides.
Hortic Res. 2024 Jul 2;11(8):uhae170. doi: 10.1093/hr/uhae170. eCollection 2024 Aug.
5
RNA sequencing analysis reveals as the key regulator in response to methyl jasmonate-induced saponin accumulation in .
Hortic Res. 2024 Feb 28;11(5):uhae058. doi: 10.1093/hr/uhae058. eCollection 2024 May.
7
Multilayered regulation of secondary metabolism in medicinal plants.
Mol Hortic. 2023 Jun 6;3(1):11. doi: 10.1186/s43897-023-00059-y.

本文引用的文献

2
Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review.
J Ethnopharmacol. 2016 Jul 21;188:234-58. doi: 10.1016/j.jep.2016.05.005. Epub 2016 May 3.
3
De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis.
Biochem Biophys Res Commun. 2015 Oct 23;466(3):450-5. doi: 10.1016/j.bbrc.2015.09.048. Epub 2015 Sep 10.
5
Ginsenosides: prospective for sustainable biotechnological production.
Appl Microbiol Biotechnol. 2014;98(14):6243-54. doi: 10.1007/s00253-014-5801-9. Epub 2014 May 25.
7
Origin and diversification of basic-helix-loop-helix proteins in plants.
Mol Biol Evol. 2010 Apr;27(4):862-74. doi: 10.1093/molbev/msp288. Epub 2009 Nov 25.
8
Isolation and characterization of a novel cDNA encoding methyl jasmonate-responsive transcription factor TcAP2 from Taxus cuspidata.
Biotechnol Lett. 2009 Nov;31(11):1801-9. doi: 10.1007/s10529-009-0068-4. Epub 2009 Jun 30.
9
[Progress of studies on bHLH transcription factor families].
Yi Chuan. 2008 Jul;30(7):821-30. doi: 10.3724/sp.j.1005.2008.00821.
10
Engineering Escherichia coli for production of functionalized terpenoids using plant P450s.
Nat Chem Biol. 2007 May;3(5):274-7. doi: 10.1038/nchembio875. Epub 2007 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验