Jonke Zeno, Legenstein Robert, Habenschuss Stefan, Maass Wolfgang
Institute for Theoretical Computer Science, Graz University of Technology, Inffeldgasse 16b/I, 8010 Graz, Austria.
Institute for Theoretical Computer Science, Graz University of Technology, Inffeldgasse 16b/I, 8010 Graz, Austria
J Neurosci. 2017 Aug 30;37(35):8511-8523. doi: 10.1523/JNEUROSCI.2078-16.2017. Epub 2017 Jul 31.
Cortical microcircuits are very complex networks, but they are composed of a relatively small number of stereotypical motifs. Hence, one strategy for throwing light on the computational function of cortical microcircuits is to analyze emergent computational properties of these stereotypical microcircuit motifs. We are addressing here the question how spike timing-dependent plasticity shapes the computational properties of one motif that has frequently been studied experimentally: interconnected populations of pyramidal cells and parvalbumin-positive inhibitory cells in layer 2/3. Experimental studies suggest that these inhibitory neurons exert some form of divisive inhibition on the pyramidal cells. We show that this data-based form of feedback inhibition, which is softer than that of winner-take-all models that are commonly considered in theoretical analyses, contributes to the emergence of an important computational function through spike timing-dependent plasticity: The capability to disentangle superimposed firing patterns in upstream networks, and to represent their information content through a sparse assembly code. We analyze emergent computational properties of a ubiquitous cortical microcircuit motif: populations of pyramidal cells that are densely interconnected with inhibitory neurons. Simulations of this model predict that sparse assembly codes emerge in this microcircuit motif under spike timing-dependent plasticity. Furthermore, we show that different assemblies will represent different hidden sources of upstream firing activity. Hence, we propose that spike timing-dependent plasticity enables this microcircuit motif to perform a fundamental computational operation on neural activity patterns.
皮质微电路是非常复杂的网络,但它们由相对少量的典型基序组成。因此,阐明皮质微电路计算功能的一种策略是分析这些典型微电路基序的涌现计算特性。我们在此探讨的问题是,依赖于尖峰时间的可塑性如何塑造一种经常在实验中被研究的基序的计算特性:第2/3层中相互连接的锥体细胞群体和小白蛋白阳性抑制性细胞。实验研究表明,这些抑制性神经元对锥体细胞施加某种形式的分裂抑制。我们表明,这种基于数据的反馈抑制形式,比理论分析中通常考虑的赢家通吃模型的抑制形式更温和,通过依赖于尖峰时间的可塑性,有助于一种重要计算功能的出现:解开上游网络中叠加的放电模式,并通过稀疏组装代码来表示它们的信息内容。我们分析了一种普遍存在的皮质微电路基序的涌现计算特性:与抑制性神经元紧密互连的锥体细胞群体。该模型的模拟预测,在依赖于尖峰时间的可塑性下会在这个微电路基序中出现稀疏组装代码。此外,我们表明不同的组装将代表上游放电活动的不同隐藏来源。因此,我们提出依赖于尖峰时间的可塑性使这个微电路基序能够对神经活动模式执行基本的计算操作。