Suppr超能文献

反馈抑制塑造皮层微电路基序的涌现计算特性。

Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs.

作者信息

Jonke Zeno, Legenstein Robert, Habenschuss Stefan, Maass Wolfgang

机构信息

Institute for Theoretical Computer Science, Graz University of Technology, Inffeldgasse 16b/I, 8010 Graz, Austria.

Institute for Theoretical Computer Science, Graz University of Technology, Inffeldgasse 16b/I, 8010 Graz, Austria

出版信息

J Neurosci. 2017 Aug 30;37(35):8511-8523. doi: 10.1523/JNEUROSCI.2078-16.2017. Epub 2017 Jul 31.

Abstract

Cortical microcircuits are very complex networks, but they are composed of a relatively small number of stereotypical motifs. Hence, one strategy for throwing light on the computational function of cortical microcircuits is to analyze emergent computational properties of these stereotypical microcircuit motifs. We are addressing here the question how spike timing-dependent plasticity shapes the computational properties of one motif that has frequently been studied experimentally: interconnected populations of pyramidal cells and parvalbumin-positive inhibitory cells in layer 2/3. Experimental studies suggest that these inhibitory neurons exert some form of divisive inhibition on the pyramidal cells. We show that this data-based form of feedback inhibition, which is softer than that of winner-take-all models that are commonly considered in theoretical analyses, contributes to the emergence of an important computational function through spike timing-dependent plasticity: The capability to disentangle superimposed firing patterns in upstream networks, and to represent their information content through a sparse assembly code. We analyze emergent computational properties of a ubiquitous cortical microcircuit motif: populations of pyramidal cells that are densely interconnected with inhibitory neurons. Simulations of this model predict that sparse assembly codes emerge in this microcircuit motif under spike timing-dependent plasticity. Furthermore, we show that different assemblies will represent different hidden sources of upstream firing activity. Hence, we propose that spike timing-dependent plasticity enables this microcircuit motif to perform a fundamental computational operation on neural activity patterns.

摘要

皮质微电路是非常复杂的网络,但它们由相对少量的典型基序组成。因此,阐明皮质微电路计算功能的一种策略是分析这些典型微电路基序的涌现计算特性。我们在此探讨的问题是,依赖于尖峰时间的可塑性如何塑造一种经常在实验中被研究的基序的计算特性:第2/3层中相互连接的锥体细胞群体和小白蛋白阳性抑制性细胞。实验研究表明,这些抑制性神经元对锥体细胞施加某种形式的分裂抑制。我们表明,这种基于数据的反馈抑制形式,比理论分析中通常考虑的赢家通吃模型的抑制形式更温和,通过依赖于尖峰时间的可塑性,有助于一种重要计算功能的出现:解开上游网络中叠加的放电模式,并通过稀疏组装代码来表示它们的信息内容。我们分析了一种普遍存在的皮质微电路基序的涌现计算特性:与抑制性神经元紧密互连的锥体细胞群体。该模型的模拟预测,在依赖于尖峰时间的可塑性下会在这个微电路基序中出现稀疏组装代码。此外,我们表明不同的组装将代表上游放电活动的不同隐藏来源。因此,我们提出依赖于尖峰时间的可塑性使这个微电路基序能够对神经活动模式执行基本的计算操作。

相似文献

1
Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs.
J Neurosci. 2017 Aug 30;37(35):8511-8523. doi: 10.1523/JNEUROSCI.2078-16.2017. Epub 2017 Jul 31.
2
Emergence of dynamic memory traces in cortical microcircuit models through STDP.
J Neurosci. 2013 Jul 10;33(28):11515-29. doi: 10.1523/JNEUROSCI.5044-12.2013.
3
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
PLoS Comput Biol. 2013 Apr;9(4):e1003037. doi: 10.1371/journal.pcbi.1003037. Epub 2013 Apr 25.
4
How feedback inhibition shapes spike-timing-dependent plasticity and its implications for recent Schizophrenia models.
Neural Netw. 2011 Aug;24(6):560-7. doi: 10.1016/j.neunet.2011.03.004. Epub 2011 Mar 10.
5
Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
Neural Netw. 2009 Oct;22(8):1139-58. doi: 10.1016/j.neunet.2009.07.015. Epub 2009 Jul 18.
6
Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
J Neurosci. 2016 Nov 2;36(44):11238-11258. doi: 10.1523/JNEUROSCI.0104-16.2016.
7
Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates.
J Physiol Paris. 2009 Jan-Mar;103(1-2):73-87. doi: 10.1016/j.jphysparis.2009.05.006. Epub 2009 Jun 11.
8
Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
Neuroscience. 2008 Jul 31;155(1):64-75. doi: 10.1016/j.neuroscience.2008.05.009. Epub 2008 May 21.
9
Spike propagation in driven chain networks with dominant global inhibition.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051917. doi: 10.1103/PhysRevE.79.051917. Epub 2009 May 20.

引用本文的文献

1
Beyond-local neural information processing in neuronal networks.
Comput Struct Biotechnol J. 2024 Nov 13;23:4288-4305. doi: 10.1016/j.csbj.2024.10.040. eCollection 2024 Dec.
2
Social state alters vision using three circuit mechanisms in Drosophila.
Nature. 2025 Jan;637(8046):646-653. doi: 10.1038/s41586-024-08255-6. Epub 2024 Nov 20.
3
Social state gates vision using three circuit mechanisms in .
bioRxiv. 2024 Mar 17:2024.03.15.585289. doi: 10.1101/2024.03.15.585289.
4
Local prediction-learning in high-dimensional spaces enables neural networks to plan.
Nat Commun. 2024 Mar 15;15(1):2344. doi: 10.1038/s41467-024-46586-0.
5
6
The effects of distractors on brightness perception based on a spiking network.
Sci Rep. 2023 Jan 27;13(1):1517. doi: 10.1038/s41598-023-28326-4.
7
Emergence of probabilistic representation in the neural network of primary visual cortex.
iScience. 2022 Feb 26;25(3):103975. doi: 10.1016/j.isci.2022.103975. eCollection 2022 Mar 18.
8
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks.
Front Comput Neurosci. 2021 Mar 4;15:543872. doi: 10.3389/fncom.2021.543872. eCollection 2021.
9
A Model for Structured Information Representation in Neural Networks of the Brain.
eNeuro. 2020 May 29;7(3). doi: 10.1523/ENEURO.0533-19.2020. Print 2020 May/Jun.

本文引用的文献

1
Packet-based communication in the cortex.
Nat Rev Neurosci. 2015 Dec;16(12):745-55. doi: 10.1038/nrn4026. Epub 2015 Oct 28.
2
In vivo measurement of cell-type-specific synaptic connectivity and synaptic transmission in layer 2/3 mouse barrel cortex.
Neuron. 2015 Jan 7;85(1):68-75. doi: 10.1016/j.neuron.2014.11.025. Epub 2014 Dec 24.
3
Formation and maintenance of neuronal assemblies through synaptic plasticity.
Nat Commun. 2014 Nov 14;5:5319. doi: 10.1038/ncomms6319.
4
STDP installs in Winner-Take-All circuits an online approximation to hidden Markov model learning.
PLoS Comput Biol. 2014 Mar 27;10(3):e1003511. doi: 10.1371/journal.pcbi.1003511. eCollection 2014 Mar.
5
Stochastic computations in cortical microcircuit models.
PLoS Comput Biol. 2013;9(11):e1003311. doi: 10.1371/journal.pcbi.1003311. Epub 2013 Nov 14.
7
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
PLoS Comput Biol. 2013 Apr;9(4):e1003037. doi: 10.1371/journal.pcbi.1003037. Epub 2013 Apr 25.
8
Synaptic computation and sensory processing in neocortical layer 2/3.
Neuron. 2013 Apr 10;78(1):28-48. doi: 10.1016/j.neuron.2013.03.020.
9
Emergence of optimal decoding of population codes through STDP.
Neural Comput. 2013 Jun;25(6):1371-407. doi: 10.1162/NECO_a_00446. Epub 2013 Mar 21.
10
The logic of inhibitory connectivity in the neocortex.
Neuroscientist. 2013 Jun;19(3):228-37. doi: 10.1177/1073858412456743. Epub 2012 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验