Suppr超能文献

无根系统发生网络。

Uprooted Phylogenetic Networks.

机构信息

LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPC, Université Paris-Est, 77454, Marne-la-Vallée, France.

School of Computing Sciences, University of East Anglia, Norwich, UK.

出版信息

Bull Math Biol. 2017 Sep;79(9):2022-2048. doi: 10.1007/s11538-017-0318-x. Epub 2017 Jul 31.

Abstract

The need for structures capable of accommodating complex evolutionary signals such as those found in, for example, wheat has fueled research into phylogenetic networks. Such structures generalize the standard model of a phylogenetic tree by also allowing for cycles and have been introduced in rooted and unrooted form. In contrast to phylogenetic trees or their unrooted versions, rooted phylogenetic networks are notoriously difficult to understand. To help alleviate this, recent work on them has also centered on their "uprooted" versions. By focusing on such graphs and the combinatorial concept of a split system which underpins an unrooted phylogenetic network, we show that not only can a so-called (uprooted) 1-nested network N be obtained from the Buneman graph (sometimes also called a median network) associated with the split system [Formula: see text] induced on the set of leaves of N but also that that graph is, in a well-defined sense, optimal. Along the way, we establish the 1-nested analogue of the fundamental "splits equivalence theorem" for phylogenetic trees and characterize maximal circular split systems.

摘要

需要能够容纳复杂进化信号的结构,例如在小麦中发现的那些信号,这推动了系统发育网络的研究。这些结构通过允许循环来概括系统发育树的标准模型,并以有根和无根的形式引入。与系统发育树或其无根版本相比,有根系统发育网络很难理解。为了帮助缓解这一问题,最近对它们的研究也集中在它们的“无根”版本上。通过关注这样的图和支撑无根系统发育网络的组合概念——分裂系统,我们表明,不仅可以从与分裂系统相关的 Buneman 图(有时也称为中值网络)获得所谓的(无根)1-嵌套网络 N,而且该图在一个定义明确的意义上是最优的。一路上,我们建立了系统发育树基本的“分裂等价定理”的 1-嵌套类似物,并描述了最大循环分裂系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459e/5552900/3abbe1be4a9a/11538_2017_318_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验