Suppr超能文献

通过熔融沉积成型直接在体外模拟 CC 细胞表型的生物相容 3D 打印聚合物。

Biocompatible 3D printed polymers via fused deposition modelling direct CC cellular phenotype in vitro.

机构信息

School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.

Department of Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.

出版信息

Lab Chip. 2017 Aug 22;17(17):2982-2993. doi: 10.1039/c7lc00577f.

Abstract

The capability to 3D print bespoke biologically receptive parts within short time periods has driven the growing prevalence of additive manufacture (AM) technology within biological settings, however limited research concerning cellular interaction with 3D printed polymers has been undertaken. In this work, we used skeletal muscle CC cell line in order to ascertain critical evidence of cellular behaviour in response to multiple bio-receptive candidate polymers; polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate (PET) and polycarbonate (PC) 3D printed via fused deposition modelling (FDM). The extrusion based nature of FDM elicited polymer specific topographies, within which CC cells exhibited reduced metabolic activity when compared to optimised surfaces of tissue culture plastic, however assay viability readings remained high across polymers outlining viable phenotypes. CC cells exhibited consistently high levels of morphological alignment across polymers, however differential myotube widths and levels of transcriptional myogenin expression appeared to demonstrate response specific thresholds at which varying polymer selection potentiates cellular differentiation, elicits pre-mature early myotube formation and directs subsequent morphological phenotype. Here we observed biocompatible AM polymers manufactured via FDM, which also appear to hold the potential to simultaneously manipulate the desired biological phenotype and enhance the biomimicry of skeletal muscle cells in vitro via AM polymer choice and careful selection of machine processing parameters. When considered in combination with the associated design freedom of AM, this may provide the opportunity to not only enhance the efficiency of creating biomimetic models, but also to precisely control the biological output within such scaffolds.

摘要

在短时间内 3D 打印定制的具有生物接受能力的部件的能力推动了增材制造(AM)技术在生物环境中的广泛应用,然而,关于细胞与 3D 打印聚合物相互作用的研究还很有限。在这项工作中,我们使用骨骼肌 CC 细胞系,以确定细胞对多种生物接受候选聚合物反应的关键证据;聚乳酸(PLA)、丙烯腈-丁二烯-苯乙烯(ABS)、聚对苯二甲酸乙二醇酯(PET)和聚碳酸酯(PC)通过熔融沉积建模(FDM)进行 3D 打印。FDM 的挤出式本质引起了聚合物特有的形貌,与组织培养塑料的优化表面相比,CC 细胞的代谢活性降低,但在整个聚合物中,测定的活力读数仍然很高,这表明具有可行的表型。CC 细胞在各种聚合物上表现出一致的高形态排列水平,然而,不同的肌管宽度和转录肌生成素表达水平似乎表现出响应特异性阈值,其中不同的聚合物选择可以促进细胞分化,引发过早的早期肌管形成,并指导随后的形态表型。在这里,我们观察到了通过 FDM 制造的生物相容的 AM 聚合物,这些聚合物似乎也有可能通过 AM 聚合物选择和仔细选择机器加工参数,同时操纵所需的生物学表型,并增强体外骨骼肌细胞的仿生特性。当与 AM 的相关设计自由度结合考虑时,这不仅可能提高创建仿生模型的效率,而且还可以精确控制这些支架内的生物学输出。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验