Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom;
Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8871-8876. doi: 10.1073/pnas.1620988114. Epub 2017 Aug 1.
Frequency-dependent plasticity (FDP) describes adaptation at the synapse in response to stimulation at different frequencies. Its consequence on the structure and function of cortical networks is unknown. We tested whether cortical "resonance," favorable stimulation frequencies at which the sensory cortices respond maximally, influenced the impact of FDP on perception, functional topography, and connectivity of the primary somatosensory cortex using psychophysics and functional imaging (fMRI). We costimulated two digits on the hand synchronously at, above, or below the resonance frequency of the somatosensory cortex, and tested subjects' accuracy and speed on tactile localization before and after costimulation. More errors and slower response times followed costimulation at above- or below-resonance, respectively. Response times were faster after at-resonance costimulation. In the fMRI, the cortical representations of the two digits costimulated above-resonance shifted closer, potentially accounting for the poorer performance. Costimulation at-resonance did not shift the digit regions, but increased the functional coupling between them, potentially accounting for the improved response time. To relate these results to synaptic plasticity, we simulated a network of oscillators incorporating Hebbian learning. Two neighboring patches embedded in a cortical sheet, mimicking the two digit regions, were costimulated at different frequencies. Network activation outside the stimulated patches was greatest at above-resonance frequencies, reproducing the spread of digit representations seen with fMRI. Connection strengths within the patches increased following at-resonance costimulation, reproducing the increased fMRI connectivity. We show that FDP extends to the cortical level and is influenced by cortical resonance.
频率依赖可塑性(FDP)描述了突触在不同频率刺激下的适应性。其对皮质网络结构和功能的影响尚不清楚。我们使用心理物理学和功能成像(fMRI)测试了皮质“共振”(有利于感觉皮层最大响应的刺激频率)是否会影响感觉皮层的 FDP 对感知、功能拓扑和主要躯体感觉皮层连接的影响。我们在手上同步刺激两个手指,频率分别在、高于或低于躯体感觉皮层的共振频率,在共刺激前后测试受试者的触觉定位准确性和速度。高于或低于共振时的共刺激分别导致更多错误和更慢的反应时间。在共振时的共刺激后反应时间更快。在 fMRI 中,高于共振时共刺激的两个数字的皮质代表区域更接近,这可能是表现较差的原因。在共振时的共刺激不会改变数字区域,但会增加它们之间的功能耦合,这可能是反应时间提高的原因。为了将这些结果与突触可塑性联系起来,我们模拟了一个包含赫布学习的振荡器网络。两个模拟数字区域的相邻斑块在不同频率下被共刺激。在受刺激斑块之外的网络激活在高于共振频率时最大,再现了 fMRI 中看到的数字表示的扩散。在共振时的共刺激后,斑块内的连接强度增加,再现了 fMRI 连接性的增加。我们表明 FDP 扩展到皮质水平,并受皮质共振的影响。