Suppr超能文献

组合代谢工程化铜绿假单胞菌 KT2440 以实现 1,2,3-三氯丙烷的有效矿化。

Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane.

机构信息

Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.

State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.

出版信息

Sci Rep. 2017 Aug 1;7(1):7064. doi: 10.1038/s41598-017-07435-x.

Abstract

An industrial waste, 1,2,3-trichloropropane (TCP), is toxic and extremely recalcitrant to biodegradation. To date, no natural TCP degraders able to mineralize TCP aerobically have been isolated. In this work, we engineered a biosafety Pseudomonas putida strain KT2440 for aerobic mineralization of TCP by implantation of a synthetic biodegradation pathway into the chromosome and further improved TCP mineralization using combinatorial engineering strategies. Initially, a synthetic pathway composed of haloalkane dehalogenase, haloalcohol dehalogenase and epoxide hydrolase was functionally assembled for the conversion of TCP into glycerol in P. putida KT2440. Then, the growth lag-phase of using glycerol as a growth precursor was eliminated by deleting the glpR gene, significantly enhancing the flux of carbon through the pathway. Subsequently, we improved the oxygen sequestering capacity of this strain through the heterologous expression of Vitreoscilla hemoglobin, which makes this strain able to mineralize TCP under oxygen-limited conditions. Lastly, we further improved intracellular energy charge (ATP/ADP ratio) and reducing power (NADPH/NADP ratio) by deleting flagella-related genes in the genome of P. putida KT2440. The resulting strain (named KTU-TGVF) could efficiently utilize TCP as the sole source of carbon for growth. Degradation studies in a bioreactor highlight the value of this engineered strain for TCP bioremediation.

摘要

一种工业废物,1,2,3-三氯丙烷(TCP),具有毒性且极难生物降解。迄今为止,尚未分离到能够有氧矿化 TCP 的天然 TCP 降解菌。在这项工作中,我们通过将合成生物降解途径植入染色体,对安全型假单胞菌 P. putida KT2440 进行了工程改造,使其能够有氧矿化 TCP,并进一步利用组合工程策略来提高 TCP 的矿化率。最初,我们在 P. putida KT2440 中构建了一个由卤代烷脱卤酶、卤代醇脱卤酶和环氧化物水解酶组成的合成途径,用于将 TCP 转化为甘油。然后,通过删除 glpR 基因消除了使用甘油作为生长前体的生长滞后期,显著提高了碳通过途径的通量。随后,我们通过异源表达血晶素蛋白来提高该菌株的氧气隔离能力,这使得该菌株能够在氧气有限的条件下矿化 TCP。最后,我们通过删除 P. putida KT2440 基因组中与鞭毛相关的基因,进一步提高了细胞内的能量电荷(ATP/ADP 比)和还原力(NADPH/NADP 比)。得到的菌株(命名为 KTU-TGVF)可以有效地将 TCP 作为唯一的碳源用于生长。在生物反应器中的降解研究突出了该工程菌株在 TCP 生物修复中的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验