Suppr超能文献

强化骨-种植体界面 第1部分:3D打印和TPS多孔表面的体外评估

Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces.

作者信息

MacBarb Regina F, Lindsey Derek P, Bahney Chelsea S, Woods Shane A, Wolfe Mark L, Yerby Scott A

机构信息

SI-BONE, Inc., San Jose, CA, USA.

Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA.

出版信息

Int J Spine Surg. 2017 Jun 1;11(3):15. doi: 10.14444/4015. eCollection 2017.

Abstract

BACKGROUND

An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation ( for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing, 3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes.

METHODS

This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells (=5 per group) were measured.

RESULTS

Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs (=0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs.

CONCLUSIONS

Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces.

CLINICAL RELEVANCE

Additive manufactured porous titanium surfaces may induce a more osteogenic environment compared to traditional TPS, and thus present as an attractive alternative to TPS-coating for orthopedic spinal implants.

摘要

背景

社会老龄化以及随之而来的骨骼健康受损发生率上升,使得人们需要先进的具有骨传导性的脊柱植入物表面,以促进更强的生物固定(用于椎间融合器、骶髂关节融合植入物和人工椎间盘置换)。增材制造,即3D打印,通过生成模仿骨形态的仿生脊柱植入物表面,可能会改善骨整合。与传统的植入物表面处理工艺相比,这种表面可能会促进更强的细胞反应。

方法

本研究调查了人成骨细胞对增材制造(AM)的小梁状钛植入物表面的反应,并与传统加工的具有钛等离子喷涂(TPS)涂层表面的基材进行比较,有无纳米晶羟基磷灰石(HA)涂层。对于TPS涂层圆盘,对锻造的Ti6Al4V ELI进行加工并施加TPS涂层。对于AM圆盘,将Ti6Al4V ELI粉末进行3D打印以形成实心基底和小梁状多孔表面。通过沉淀浸涂旋转法施加HA涂层。对表面孔隙率、孔径、厚度和亲水性进行了表征。测量了hFOB细胞(每组 = 5)的初始细胞附着、增殖、碱性磷酸酶(ALP)活性和钙生成。

结果

AM圆盘上的细胞表现出更快的增殖活性。虽然TPS和AM圆盘之间的平均ALP表达和钙生成没有差异,但AM圆盘上的钙生成比TPS圆盘高48%(= 0.07)。总体而言,与未涂层的TPS和AM圆盘相比,HA涂层并未进一步改善结果。

结论

结果表明,增材制造能够制造出可控的小梁状表面,与TPS涂层相比,可促进更早的细胞增殖和更高的钙生成趋势。结果还表明,纳米晶HA在多孔钛表面可能不具有优势。

临床意义

与传统的TPS相比,增材制造的多孔钛表面可能会诱导更具成骨作用的环境,因此作为矫形脊柱植入物TPS涂层的一种有吸引力的替代方案。

相似文献

1
Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces.
Int J Spine Surg. 2017 Jun 1;11(3):15. doi: 10.14444/4015. eCollection 2017.
4
5
Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
J Mech Behav Biomed Mater. 2018 Nov;87:230-239. doi: 10.1016/j.jmbbm.2018.07.019. Epub 2018 Jul 12.
8
Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants.
Clin Oral Implants Res. 1998 Aug;9(4):261-71. doi: 10.1034/j.1600-0501.1998.090407.x.
9
Healthy and diabetic primary human osteoblasts exhibit varying phenotypic profiles in high and low glucose environments on 3D-printed titanium surfaces.
Front Endocrinol (Lausanne). 2024 Jul 3;15:1346094. doi: 10.3389/fendo.2024.1346094. eCollection 2024.
10
Hydroxyapatite-coating on titanium arc sprayed titanium implants.
J Biomed Mater Res. 1997 Jun 5;35(3):287-98. doi: 10.1002/(sici)1097-4636(19970605)35:3<287::aid-jbm3>3.0.co;2-d.

引用本文的文献

1
The rational design, biofunctionalization and biological properties of orthopedic porous titanium implants: a review.
Front Bioeng Biotechnol. 2025 Feb 26;13:1548675. doi: 10.3389/fbioe.2025.1548675. eCollection 2025.
3
An additively manufactured titanium tilting suture anchor: a biomechanical assessment on human and ovine bone specimens.
Front Surg. 2023 Nov 30;10:1195728. doi: 10.3389/fsurg.2023.1195728. eCollection 2023.
4
3D printing for spine pathologies: a state-of-the-art review.
Biomed Eng Lett. 2023 Jul 10;13(4):579-589. doi: 10.1007/s13534-023-00302-x. eCollection 2023 Nov.
5
Comparative study of the osseointegration of 3D-printed and plasma-coated titanium implants.
World J Orthop. 2023 Sep 18;14(9):682-689. doi: 10.5312/wjo.v14.i9.682.
6
Biomaterials for Interbody Fusion in Bone Tissue Engineering.
Front Bioeng Biotechnol. 2022 May 17;10:900992. doi: 10.3389/fbioe.2022.900992. eCollection 2022.
7
How surface coatings on titanium implants affect keratinized tissue: A systematic review.
J Biomed Mater Res B Appl Biomater. 2022 Jul;110(7):1713-1723. doi: 10.1002/jbm.b.35025. Epub 2022 Feb 1.
8
Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments.
Front Bioeng Biotechnol. 2021 Dec 7;9:783816. doi: 10.3389/fbioe.2021.783816. eCollection 2021.

本文引用的文献

1
Optimizing surface characteristics for cell adhesion and proliferation on titanium plasma spray coatings on polyetheretherketone.
Spine J. 2016 Oct;16(10):1238-1243. doi: 10.1016/j.spinee.2016.05.017. Epub 2016 May 27.
2
Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement.
Int J Nanomedicine. 2016 Feb 4;11:585-94. doi: 10.2147/IJN.S89376. eCollection 2016.
3
Osteoporosis and osteoarthritis: shared mechanisms and epidemiology.
Curr Opin Rheumatol. 2016 Mar;28(2):97-103. doi: 10.1097/BOR.0000000000000256.
4
Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.
Biomaterials. 2016 Mar;83:127-41. doi: 10.1016/j.biomaterials.2016.01.012. Epub 2016 Jan 6.
5
Dual role of P2 receptors during osteoblast differentiation.
Cell Biochem Biophys. 2015 Mar;71(2):1225-33. doi: 10.1007/s12013-014-0332-7.
6
Five-year clinical and radiographic outcomes after minimally invasive sacroiliac joint fusion using triangular implants.
Open Orthop J. 2014 Oct 17;8:375-83. doi: 10.2174/1874325001408010375. eCollection 2014.
9
Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone.
J Biomed Mater Res A. 2013 Feb;101(2):465-71. doi: 10.1002/jbm.a.34358. Epub 2012 Aug 3.
10
The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors.
Biomaterials. 2012 Oct;33(30):7386-93. doi: 10.1016/j.biomaterials.2012.06.066. Epub 2012 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验