Suppr超能文献

LKB1-AMPK调节小鼠肠道上皮隐窝细胞分裂模式中营养物质诱导的变化。

LKB1-AMPK modulates nutrient-induced changes in the mode of division of intestinal epithelial crypt cells in mice.

作者信息

Blackmore Katherine, Zhou Weinan, Dailey Megan J

机构信息

Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Exp Biol Med (Maywood). 2017 Sep;242(15):1490-1498. doi: 10.1177/1535370217724427. Epub 2017 Aug 2.

Abstract

Nutrient availability influences intestinal epithelial stem cell proliferation and tissue growth. Increases in food result in a greater number of epithelial cells, villi height and crypt depth. We investigated whether this nutrient-driven expansion of the tissue is the result of a change in the mode of intestinal epithelial stem cell division and if LKB1-AMPK signaling plays a role. We utilized in vivo and in vitro experiments to test this hypothesis. C57BL/6J mice were separated into four groups and fed varying amounts of chow for 18 h: (1) ad libitum, (2) 50% of their average daily intake (3) fasted or (4) fasted for 12 h and refed. Mice were sacrificed, intestinal sections excised and immunohistochemically processed to determine the mitotic spindle orientation. Epithelial organoids in vitro were treated with no (0 mM), low (5 mM) or high (20 mM) amounts of glucose with or without an activator (Metformin) or inhibitor (Compound C) of LKB1-AMPK signaling. Cells were then processed to determine the mode of stem cell division. Fasted mice show a greater % of asymmetrically dividing cells compared with the other feeding groups. Organoids incubated with 0 mM glucose resulted in a greater % of asymmetrically dividing cells compared with the low or high-glucose conditions. In addition, LKB1-AMPK activation attenuated the % of symmetric division normally seen in high-glucose conditions. In contrast, LKB1-AMPK inhibition attenuated the % of asymmetric division normally seen in no glucose conditions. These data suggest that nutrient availability dictates the mode of division and that LKB1-AMPK mediates this nutrient-driven effect on intestinal epithelial stem cell proliferation. Impact statement The underlying cell biology of changes in the polarity of mitotic spindles and its relevance to tissue growth is a new concept and, thus, these data provide novel findings to begin to explain how this process contributes to the regeneration and growth of tissues. We find that short-term changes in food intake in vivo or glucose availability in vitro dictate the mode of division of crypt cells. In addition, we find that LKB1-AMPK signaling modulates the glucose-induced changes in the mode of division in vitro. Identifying mechanisms involved in the mode of division may provide new targets to control tissue growth.

摘要

营养物质的可利用性会影响肠道上皮干细胞的增殖和组织生长。食物摄入量的增加会导致上皮细胞数量增多、绒毛高度增加以及隐窝深度增加。我们研究了这种由营养物质驱动的组织扩张是否是肠道上皮干细胞分裂模式改变的结果,以及LKB1-AMPK信号通路是否发挥作用。我们利用体内和体外实验来验证这一假设。将C57BL/6J小鼠分为四组,分别给予不同量的食物喂养18小时:(1)自由进食,(2)平均每日摄入量的50%,(3)禁食,或(4)禁食12小时后再喂食。处死小鼠,切除肠道切片并进行免疫组织化学处理以确定有丝分裂纺锤体方向。体外培养的上皮类器官分别用无(0 mM)、低(5 mM)或高(20 mM)葡萄糖处理,同时添加或不添加LKB1-AMPK信号通路的激活剂(二甲双胍)或抑制剂(化合物C)。然后对细胞进行处理以确定干细胞的分裂模式。与其他喂养组相比,禁食小鼠中不对称分裂细胞的百分比更高。与低葡萄糖或高葡萄糖条件相比,用0 mM葡萄糖培养的类器官中不对称分裂细胞的百分比更高。此外,LKB1-AMPK激活减弱了在高葡萄糖条件下通常出现的对称分裂百分比。相反,LKB1-AMPK抑制减弱了在无葡萄糖条件下通常出现的不对称分裂百分比。这些数据表明营养物质的可利用性决定了分裂模式,并且LKB1-AMPK介导了这种由营养物质驱动的对肠道上皮干细胞增殖的影响。影响声明有丝分裂纺锤体极性变化的潜在细胞生物学及其与组织生长的相关性是一个新概念,因此,这些数据提供了新的发现,开始解释这个过程如何促进组织的再生和生长。我们发现体内食物摄入量的短期变化或体外葡萄糖的可利用性决定了隐窝细胞的分裂模式。此外,我们发现LKB1-AMPK信号通路在体外调节葡萄糖诱导的分裂模式变化。确定参与分裂模式的机制可能为控制组织生长提供新的靶点。

相似文献

1
LKB1-AMPK modulates nutrient-induced changes in the mode of division of intestinal epithelial crypt cells in mice.
Exp Biol Med (Maywood). 2017 Sep;242(15):1490-1498. doi: 10.1177/1535370217724427. Epub 2017 Aug 2.
2
Obesity, independent of diet, drives lasting effects on intestinal epithelial stem cell proliferation in mice.
Exp Biol Med (Maywood). 2018 Jun;243(10):826-835. doi: 10.1177/1535370218777762.
3
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells.
Nature. 2010 Dec 2;468(7324):653-8. doi: 10.1038/nature09571.
4
Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism.
J Cell Physiol. 2018 Apr;233(4):3465-3475. doi: 10.1002/jcp.26199. Epub 2017 Nov 1.
5
Honokiol activates the LKB1-AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes.
Toxicol Appl Pharmacol. 2015 Apr 15;284(2):113-24. doi: 10.1016/j.taap.2015.02.020. Epub 2015 Feb 28.
6
SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells.
Circ Res. 2010 Apr 30;106(8):1384-93. doi: 10.1161/CIRCRESAHA.109.215483. Epub 2010 Mar 4.
7
LKB1 Represses ATOH1 via PDK4 and Energy Metabolism and Regulates Intestinal Stem Cell Fate.
Gastroenterology. 2020 Apr;158(5):1389-1401.e10. doi: 10.1053/j.gastro.2019.12.033. Epub 2020 Jan 11.
9
The LKB1/AMPK polarity pathway.
FEBS Lett. 2011 Apr 6;585(7):981-5. doi: 10.1016/j.febslet.2010.12.025. Epub 2010 Dec 23.
10
Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway.
Biochem Pharmacol. 2016 May 15;108:47-57. doi: 10.1016/j.bcp.2016.03.019. Epub 2016 Mar 22.

引用本文的文献

1
Role of Diet in Stem and Cancer Stem Cells.
Int J Mol Sci. 2022 Jul 23;23(15):8108. doi: 10.3390/ijms23158108.
2
Effects of cage versus floor rearing system on goose intestinal histomorphology and cecal microbial composition.
Poult Sci. 2022 Jul;101(7):101931. doi: 10.1016/j.psj.2022.101931. Epub 2022 Apr 26.
3
The Emerging Roles of JNK Signaling in Stem Cell Homeostasis.
Int J Mol Sci. 2021 May 24;22(11):5519. doi: 10.3390/ijms22115519.
4
The differences in intestinal growth and microorganisms between male and female ducks.
Poult Sci. 2021 Feb;100(2):1167-1177. doi: 10.1016/j.psj.2020.10.051. Epub 2020 Nov 2.
5
Fra-1 Inhibits Cell Growth and the Warburg Effect in Cervical Cancer Cells via STAT1 Regulation of the p53 Signaling Pathway.
Front Cell Dev Biol. 2020 Sep 30;8:579629. doi: 10.3389/fcell.2020.579629. eCollection 2020.
7
Regulation of intestinal growth in response to variations in energy supply and demand.
Obes Rev. 2018 Dec;19 Suppl 1(Suppl Suppl 1):61-72. doi: 10.1111/obr.12780.
8
Asymmetric cell division-dominant neutral drift model for normal intestinal stem cell homeostasis.
Am J Physiol Gastrointest Liver Physiol. 2019 Jan 1;316(1):G64-G74. doi: 10.1152/ajpgi.00242.2018. Epub 2018 Oct 25.
10
Obesity, independent of diet, drives lasting effects on intestinal epithelial stem cell proliferation in mice.
Exp Biol Med (Maywood). 2018 Jun;243(10):826-835. doi: 10.1177/1535370218777762.

本文引用的文献

1
High-fat diet enhances stemness and tumorigenicity of intestinal progenitors.
Nature. 2016 Mar 3;531(7592):53-8. doi: 10.1038/nature17173.
3
PAR-4/LKB1 regulates DNA replication during asynchronous division of the early C. elegans embryo.
J Cell Biol. 2014 May 26;205(4):447-55. doi: 10.1083/jcb.201312029. Epub 2014 May 19.
4
Nutrient-sensing pathways and metabolic regulation in stem cells.
J Cell Biol. 2013 Oct 14;203(1):23-33. doi: 10.1083/jcb.201303110.
5
Primary mouse small intestinal epithelial cell cultures.
Methods Mol Biol. 2013;945:319-28. doi: 10.1007/978-1-62703-125-7_19.
6
Identifying the stem cell of the intestinal crypt: strategies and pitfalls.
Cell Stem Cell. 2012 Oct 5;11(4):452-60. doi: 10.1016/j.stem.2012.09.009.
7
AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.
Mol Cell Biol. 2012 Aug;32(16):3203-17. doi: 10.1128/MCB.00418-12. Epub 2012 Jun 11.
8
Altered modes of stem cell division drive adaptive intestinal growth.
Cell. 2011 Oct 28;147(3):603-14. doi: 10.1016/j.cell.2011.08.048.
9
Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice.
Dis Model Mech. 2010 Sep-Oct;3(9-10):525-34. doi: 10.1242/dmm.006239. Epub 2010 Aug 16.
10
Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue.
Cell Stem Cell. 2010 Feb 5;6(2):175-81. doi: 10.1016/j.stem.2009.12.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验