Suppr超能文献

麦芽糖糊精的检测及其与蔗糖的区分独立于T1R2 + T1R3异二聚体。

Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer.

作者信息

Smith Kimberly R, Spector Alan C

机构信息

Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida.

Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida

出版信息

Am J Physiol Regul Integr Comp Physiol. 2017 Oct 1;313(4):R450-R462. doi: 10.1152/ajpregu.00049.2017. Epub 2017 Aug 2.

Abstract

Maltodextrins, such as Maltrin and Polycose, are glucose polymer mixtures of varying chain lengths that are palatable to rodents. Although glucose and other sugars activate the T1R2 + T1R3 "sweet" taste receptor, recent evidence from T1R2- or T1R3-knockout (KO) mice suggests that maltodextrins, despite their glucose polymer composition, activate a separate receptor mechanism to generate a taste percept qualitatively distinguishable from that of sweeteners. However, explicit discrimination of maltodextrins from prototypical sweeteners has not yet been psychophysically tested in any murine model. Therefore, mice lacking T1R2 + T1R3 and wild-type controls were tested in a two-response taste discrimination task to determine whether maltodextrins are ) detectable when both receptor subunits are absent and ) perceptually distinct from that of sucrose irrespective of viscosity, intensity, and hedonics. Most KO mice displayed similar Polycose sensitivity as controls. However, some KO mice were only sensitive to the higher Polycose concentrations, implicating potential allelic variation in the putative polysaccharide receptor or downstream pathways unmasked by the absence of T1R2 + T1R3. Varied Maltrin and sucrose concentrations of approximately matched viscosities were then presented to render the oral somatosensory features, intensity, and hedonic value of the solutions irrelevant. Although both genotypes competently discriminated Maltrin from sucrose, performance was apparently driven by the different orosensory percepts of the two stimuli in control mice and the presence of a Maltrin but not sucrose orosensory cue in KO mice. These data support the proposed presence of an orosensory receptor mechanism that gives rise to a qualitatively distinguishable sensation from that of sucrose.

摘要

麦芽糊精,如麦芽糖糊精和聚葡萄糖,是链长各异的葡萄糖聚合物混合物,啮齿动物对其口味尚可接受。尽管葡萄糖和其他糖类会激活T1R2 + T1R3“甜味”味觉受体,但最近来自T1R2或T1R3基因敲除(KO)小鼠的证据表明,麦芽糊精尽管由葡萄糖聚合物组成,却激活了一种独立的受体机制,从而产生一种在质量上与甜味剂不同的味觉感受。然而,在任何小鼠模型中,尚未对麦芽糊精与典型甜味剂进行明确的心理物理学区分测试。因此,对缺乏T1R2 + T1R3的小鼠和野生型对照进行了双反应味觉辨别任务测试,以确定:(1)当两个受体亚基都不存在时,麦芽糊精是否可被检测到;(2)无论粘度、强度和愉悦度如何,麦芽糊精在感知上是否与蔗糖不同。大多数基因敲除小鼠对聚葡萄糖的敏感性与对照相似。然而,一些基因敲除小鼠仅对较高浓度的聚葡萄糖敏感,这暗示了假定的多糖受体或因缺乏T1R2 + T1R3而暴露的下游途径中可能存在等位基因变异。随后呈现了粘度大致匹配的不同麦芽糖糊精和蔗糖浓度,以使溶液的口腔体感特征、强度和愉悦值无关紧要。尽管两种基因型都能很好地区分麦芽糖糊精和蔗糖,但在对照小鼠中,表现显然是由两种刺激不同的口腔感觉引起的,而在基因敲除小鼠中,则是由麦芽糖糊精而非蔗糖的口腔感觉线索引起的。这些数据支持了所提出的存在一种口腔感觉受体机制的观点,该机制产生一种在质量上与蔗糖不同的感觉。

相似文献

1
Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer.
Am J Physiol Regul Integr Comp Physiol. 2017 Oct 1;313(4):R450-R462. doi: 10.1152/ajpregu.00049.2017. Epub 2017 Aug 2.
2
T1R2 and T1R3 subunits are individually unnecessary for normal affective licking responses to Polycose: implications for saccharide taste receptors in mice.
Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R855-65. doi: 10.1152/ajpregu.90869.2008. Epub 2009 Jan 21.
3
Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal.
Am J Physiol Regul Integr Comp Physiol. 2012 Jul 15;303(2):R218-35. doi: 10.1152/ajpregu.00089.2012. Epub 2012 May 23.
5
T1R3 taste receptor is critical for sucrose but not Polycose taste.
Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R866-76. doi: 10.1152/ajpregu.90870.2008. Epub 2008 Dec 17.
6
Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.
Am J Physiol Regul Integr Comp Physiol. 2015 Sep;309(5):R552-60. doi: 10.1152/ajpregu.00056.2015. Epub 2015 Jul 8.
7
The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice.
Physiol Behav. 2012 Aug 20;107(1):50-8. doi: 10.1016/j.physbeh.2012.05.023. Epub 2012 Jun 6.
9
Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity.
Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R960-71. doi: 10.1152/ajpregu.91018.2008. Epub 2009 Feb 11.
10
T1R2+T1R3-independent chemosensory inputs contributing to behavioral discrimination of sugars in mice.
Am J Physiol Regul Integr Comp Physiol. 2019 May 1;316(5):R448-R462. doi: 10.1152/ajpregu.00255.2018. Epub 2019 Jan 9.

引用本文的文献

1
Gustatory and olfactory-guided responsiveness to maltodextrin solutions in mice.
Am J Physiol Regul Integr Comp Physiol. 2025 Jul 1;329(1):R55-R69. doi: 10.1152/ajpregu.00275.2024. Epub 2025 May 17.
3
Novel approaches to the study of viscosity discrimination in rodents.
Sci Rep. 2022 Sep 30;12(1):16448. doi: 10.1038/s41598-022-20441-y.
7
The Functional and Neurobiological Properties of Bad Taste.
Physiol Rev. 2019 Jan 1;99(1):605-663. doi: 10.1152/physrev.00044.2017.
8
Taste sensitivity to a mixture of monosodium glutamate and inosine 5'-monophosphate by mice lacking both subunits of the T1R1+T1R3 amino acid receptor.
Am J Physiol Regul Integr Comp Physiol. 2018 Jun 1;314(6):R802-R810. doi: 10.1152/ajpregu.00352.2017. Epub 2018 Feb 14.

本文引用的文献

1
Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor.
Chem Senses. 2016 Nov 1;41(9):755-762. doi: 10.1093/chemse/bjw088.
2
Maltodextrin and sucrose preferences in sweet-sensitive (C57BL/6J) and subsensitive (129P3/J) mice revisited.
Physiol Behav. 2016 Oct 15;165:286-90. doi: 10.1016/j.physbeh.2016.08.012. Epub 2016 Aug 12.
3
A new gustometer for taste testing in rodents.
Chem Senses. 2015 Mar;40(3):187-96. doi: 10.1093/chemse/bju072. Epub 2015 Jan 22.
4
Evidence that humans can taste glucose polymers.
Chem Senses. 2014 Nov;39(9):737-47. doi: 10.1093/chemse/bju031.
6
High salt recruits aversive taste pathways.
Nature. 2013 Feb 28;494(7438):472-5. doi: 10.1038/nature11905. Epub 2013 Feb 13.
7
The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice.
Physiol Behav. 2012 Aug 20;107(1):50-8. doi: 10.1016/j.physbeh.2012.05.023. Epub 2012 Jun 6.
8
Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal.
Am J Physiol Regul Integr Comp Physiol. 2012 Jul 15;303(2):R218-35. doi: 10.1152/ajpregu.00089.2012. Epub 2012 May 23.
9
Gustatory sensation of (L)- and (D)-amino acids in humans.
Amino Acids. 2012 Dec;43(6):2349-58. doi: 10.1007/s00726-012-1315-x. Epub 2012 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验