Hamel Elizabeth A, Blonde Ginger D, Williams Ellie, Dewan Adam, Spector Alan C
Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States.
Am J Physiol Regul Integr Comp Physiol. 2025 Jul 1;329(1):R55-R69. doi: 10.1152/ajpregu.00275.2024. Epub 2025 May 17.
Rodents avidly consume maltodextrin solutions. Oligosaccharides appear to generate a detectable oral perception distinct from basic tastes in rodents and humans. Mice lacking one or both subunits of the T1R2 + T1R3 heterodimer still display relatively normal preference for maltodextrins but have severely blunted responsiveness to sugars. To test whether taste contributes to maltodextrin responsiveness, we performed lingual gustatory nerve transection (NX) in mice with [wild-type (WT)] and without [knockout (KO)] functional T1R3 subunits. Mice were then tested, after a ∼23-h fast, for concentration-dependent licking responses to Maltrin, a maltodextrin, and sucrose in a brief-access paradigm, which minimizes postingestive influences on responsiveness. Compared with SHAM mice, NX mice displayed blunted lick responses and initiated fewer trials to Maltrin. The KO mice exhibited some concentration-dependent licking to sucrose, though attenuated, which may be due to flavor-nutrient learning across sessions. However, NX blunted this responsiveness in all mice. The results suggest that an intact chorda tympani and/or glossopharyngeal nerve(s) is required for normal licking to maltodextrin and sucrose solutions, confirming a contribution of gustatory signals to behavior. A follow-up experiment tested whether olfactory signals contribute to Maltrin detection in mice trained in a Go/No-Go task. Mice could detect the volatiles associated with Maltrin in a concentration-dependent manner. As maltodextrins have negligible vapor pressure, mice are likely responding to volatile contaminants within the solution, which could potentially serve as cues for flavor-nutrient conditioning. Nevertheless, there is clearly a gustatory component that unconditionally drives hedonic responsiveness to this stimulus. Maltodextrins have long been believed to be tasteless and odorless and are commonly used in food production. Previous research suggests that maltodextrins elicit a distinct taste, separate from other carbohydrate stimuli like sugars, in both rodents and humans. Our findings provide compelling evidence that ingestive responsiveness to maltodextrins in mice relies on signaling in gustatory nerves. Furthermore, rodents can detect this stimulus via olfaction. Olfactory cues may contribute to flavor-nutrient conditioning when taste is removed.
啮齿动物会贪婪地摄取麦芽糊精溶液。低聚糖似乎能产生一种可检测到的口腔感觉,这种感觉在啮齿动物和人类中与基本味觉不同。缺乏T1R2 + T1R3异二聚体一个或两个亚基的小鼠对麦芽糊精仍表现出相对正常的偏好,但对糖类的反应性严重减弱。为了测试味觉是否对麦芽糊精反应性有影响,我们对具有[野生型(WT)]和不具有[敲除(KO)]功能性T1R3亚基的小鼠进行了舌味觉神经切断术(NX)。然后,在禁食约23小时后,以短暂接触范式测试小鼠对麦芽糊精Maltrin和蔗糖的浓度依赖性舔舐反应,该范式可将摄食后对反应性的影响降至最低。与假手术小鼠相比,NX小鼠的舔舐反应减弱,对Maltrin开始的试验次数减少。KO小鼠对蔗糖表现出一定的浓度依赖性舔舐,尽管有所减弱,这可能是由于不同试验阶段间的风味-营养学习。然而,NX使所有小鼠的这种反应性都减弱了。结果表明,完整的鼓索神经和/或舌咽神经是对麦芽糊精和蔗糖溶液进行正常舔舐所必需的,这证实了味觉信号对行为有影响。一项后续实验测试了嗅觉信号是否有助于在Go/No-Go任务中训练的小鼠检测Maltrin。小鼠能够以浓度依赖性方式检测与Maltrin相关的挥发物。由于麦芽糊精的蒸气压可忽略不计,小鼠可能是对溶液中的挥发性污染物做出反应,这些污染物可能潜在地作为风味-营养条件作用的线索。然而,显然存在一种味觉成分,它无条件地驱动对这种刺激的享乐反应性。长期以来,麦芽糊精一直被认为是无味无臭的,并且常用于食品生产。先前的研究表明,麦芽糊精在啮齿动物和人类中都会引发一种与其他碳水化合物刺激(如糖类)不同的独特味道。我们的研究结果提供了令人信服的证据,表明小鼠对麦芽糊精的摄食反应性依赖于味觉神经中的信号传导。此外,啮齿动物可以通过嗅觉检测这种刺激。当味觉消失时,嗅觉线索可能有助于风味-营养条件作用。