VA San Diego Healthcare System, San Diego, CA, USA.
Departamento de Biología Molecular, CIBER Enfermedades Raras, Centro de Biología Molecular 'Severo Ochoa' (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Diabetologia. 2017 Oct;60(10):2052-2065. doi: 10.1007/s00125-017-4379-z. Epub 2017 Aug 2.
AIMS/HYPOTHESIS: Mitochondria are important regulators of the metabolic phenotype in type 2 diabetes. A key factor in mitochondrial physiology is the H-ATP synthase. The expression and activity of its physiological inhibitor, ATPase inhibitory factor 1 (IF1), controls tissue homeostasis, metabolic reprogramming and signalling. We aimed to characterise the putative role of IF1 in mediating skeletal muscle metabolism in obesity and diabetes.
We examined the 'mitochondrial signature' of obesity and type 2 diabetes in a cohort of 100 metabolically characterised human skeletal muscle biopsy samples. The expression and activity of H-ATP synthase, IF1 and key mitochondrial proteins were characterised, including their association with BMI, fasting plasma insulin, fasting plasma glucose and HOMA-IR. IF1 was also overexpressed in primary cultures of human myotubes derived from the same biopsies to unveil the possible role played by the pathological inhibition of the H-ATP synthase in skeletal muscle.
The results indicate that type 2 diabetes and obesity act via different mechanisms to impair H-ATP synthase activity in human skeletal muscle (76% reduction in its catalytic subunit vs 280% increase in IF1 expression, respectively) and unveil a new pathway by which IF1 influences lipid metabolism. Mechanistically, IF1 altered cellular levels of α-ketoglutarate and L-carnitine metabolism in the myotubes of obese (84% of control) and diabetic (76% of control) individuals, leading to limited β-oxidation of fatty acids (60% of control) and their cytosolic accumulation (164% of control). These events led to enhanced release of TNF-α (10 ± 2 pg/ml, 27 ± 5 pg/ml and 35 ± 4 pg/ml in control, obese and type 2 diabetic participants, respectively), which probably contributes to an insulin resistant phenotype.
CONCLUSIONS/INTERPRETATION: Overall, our data highlight IF1 as a novel regulator of lipid metabolism and metabolic disorders, and a possible target for therapeutic intervention.
目的/假设:线粒体是 2 型糖尿病代谢表型的重要调节因子。线粒体生理学的一个关键因素是 H-ATP 合酶。其生理抑制剂 ATP 酶抑制因子 1(IF1)的表达和活性控制着组织内稳态、代谢重编程和信号转导。我们旨在研究 IF1 在介导肥胖和 2 型糖尿病患者骨骼肌代谢中的作用。
我们对 100 例代谢特征明确的人类骨骼肌活检样本的肥胖和 2 型糖尿病的“线粒体特征”进行了研究。我们对 H-ATP 合酶、IF1 和关键线粒体蛋白的表达和活性进行了研究,包括它们与 BMI、空腹胰岛素、空腹血糖和 HOMA-IR 的关系。IF1 也在从相同活检样本中获得的原代人肌管中过表达,以揭示病理抑制 H-ATP 合酶在骨骼肌中可能发挥的作用。
结果表明,2 型糖尿病和肥胖通过不同的机制作用于人类骨骼肌中的 H-ATP 合酶活性(其催化亚基减少 76%,而 IF1 表达增加 280%),并揭示了 IF1 影响脂质代谢的新途径。从机制上讲,IF1 改变了肥胖(对照的 84%)和糖尿病(对照的 76%)个体肌管中α-酮戊二酸和 L-肉碱代谢的细胞水平,导致脂肪酸的β-氧化有限(对照的 60%),并在细胞质中积累(对照的 164%)。这些事件导致 TNF-α 的释放增加(对照、肥胖和 2 型糖尿病患者分别为 10±2pg/ml、27±5pg/ml 和 35±4pg/ml),这可能导致胰岛素抵抗表型。
结论/解释:总的来说,我们的数据强调了 IF1 作为脂质代谢和代谢紊乱的新型调节剂,以及治疗干预的可能靶点。