Center for Nanoscale Science and Technology, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.
Maryland Nanocenter, University of Maryland , College Park, Maryland 20742, United States.
Nano Lett. 2017 Sep 13;17(9):5587-5594. doi: 10.1021/acs.nanolett.7b02404. Epub 2017 Aug 8.
The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscale in photothermal induced resonance experiments. The intrinsic η of metal-organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. Our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.
原子力显微镜(AFM)为纳米尺度的观察提供了一个丰富的窗口,但许多动态现象太快太弱,无法直接进行 AFM 检测。集成腔光机械学正在彻底改变微机械传感;然而,它尚未影响 AFM。在这里,我们通过制造与光子谐振器集成的皮克级探针取得了开创性的进展,实现了具有高时间分辨率(<10ns)和皮米级垂直位移不确定性的功能 AFM 检测。利用能够高精度捕获快速事件的能力,我们首次在光热诱导共振实验中同时测量纳米尺度的热导率(η)和化学成分。通过宏观技术无法测量的金属有机骨架单个微晶体的固有 η ,可以获得小的测量不确定性(8%)。灵敏度提高了 50 倍,将测量吞吐量提高了 2500 倍,并能够测量分子单层薄样品的化学成分。我们用于小探针的这种改变游戏规则的光子读出技术打破了 AFM 测量精度和捕获瞬态事件能力之间的常见权衡,从而改变了观察材料中纳米尺度动力学的能力。