Suppr超能文献

微生物产生的纳米颗粒对可持续发展目标的贡献。

The contribution of microbially produced nanoparticles to sustainable development goals.

机构信息

SynthSys, CSEC and School of Biological Sciences, University of Edinburgh, Edinburgh, UK.

出版信息

Microb Biotechnol. 2017 Sep;10(5):1212-1215. doi: 10.1111/1751-7915.12788. Epub 2017 Aug 3.

Abstract

Nanoparticles (NPs), particles having one or more dimensions below 100 nm, are currently being synthesized through chemical and physical methods on an industrial scale. However, these methods for the synthesis of NPs do not fit with sustainable development goals. NP synthesis, through chemical and physical methods, requires high temperatures and/or pressures resulting in high energy consumption and the generation of large amounts of waste. In recent years, research into the synthesis of NPs has shifted to more green and biological methods, often using microorganisms. A biological approach has many advantages over chemical and physical methods. Reactions are catalysed in aqueous solutions at standard temperature and pressure (cost effective and low energy syntheses). This method does not require solvents or harmful chemicals, making NP biosynthesis a greener and more eco-friendly method. Furthermore, NP synthesis by microbes does not require the use of pure starting materials; thus it can simultaneously be used for the bioremediation of contaminated water, land and waste, and the biosynthesis of NPs. Therefore the biosynthesis of NPs contributes to the sustainable development goals, while the alternative physical and chemical methods exclusively utilize scarce and expensive resources for NP synthesis.

摘要

纳米粒子(NPs)是指一维或多维度尺寸小于 100nm 的粒子,目前正在工业规模上通过化学和物理方法合成。然而,这些合成 NPs 的方法不符合可持续发展目标。通过化学和物理方法合成 NPs 需要高温和/或高压,这导致了高能耗和大量废物的产生。近年来,NP 合成的研究转向了更加绿色和生物的方法,通常使用微生物。生物方法相对于化学和物理方法具有许多优势。反应在标准温度和压力下的水溶液中进行(具有成本效益和低能耗的合成)。这种方法不需要溶剂或有害化学品,因此 NP 生物合成是一种更加环保和生态友好的方法。此外,微生物合成 NPs 不需要使用纯起始材料;因此,它可以同时用于受污染水、土地和废物的生物修复,以及 NPs 的生物合成。因此,NP 的生物合成有助于实现可持续发展目标,而替代的物理和化学方法则专门将稀缺和昂贵的资源用于 NP 的合成。

相似文献

1
The contribution of microbially produced nanoparticles to sustainable development goals.
Microb Biotechnol. 2017 Sep;10(5):1212-1215. doi: 10.1111/1751-7915.12788. Epub 2017 Aug 3.
2
Eco-friendly zinc oxide nanoparticle biosynthesis powered by probiotic bacteria.
Appl Microbiol Biotechnol. 2025 Jan 29;109(1):32. doi: 10.1007/s00253-024-13355-4.
3
Biological synthesis of nanoparticles in biofilms.
Enzyme Microb Technol. 2016 Dec;95:4-12. doi: 10.1016/j.enzmictec.2016.07.015. Epub 2016 Jul 29.
5
The Minderoo-Monaco Commission on Plastics and Human Health.
Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.
6
Insights into the Biosynthesis of Nanoparticles by the Genus .
Appl Environ Microbiol. 2021 Oct 28;87(22):e0139021. doi: 10.1128/AEM.01390-21. Epub 2021 Sep 8.
7
An insight into the green synthesis of SiO nanostructures as a novel adsorbent for removal of toxic water pollutants.
Environ Res. 2022 Sep;212(Pt C):113328. doi: 10.1016/j.envres.2022.113328. Epub 2022 Apr 26.
8
Sustainable Approaches in Green Synthesis of Silica Nanoparticles Using Extracts of Chlorella and Its Application.
Appl Biochem Biotechnol. 2024 Nov;196(11):7928-7939. doi: 10.1007/s12010-024-04949-9. Epub 2024 Apr 25.
10
A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry.
J Photochem Photobiol B. 2017 Jan;166:272-284. doi: 10.1016/j.jphotobiol.2016.12.011. Epub 2016 Dec 18.

引用本文的文献

1
Controlling Gold Nanoparticle Synthesis and Size for Catalysis.
Environ Sci Technol. 2024 Jun 4;58(22):9714-9722. doi: 10.1021/acs.est.4c00266. Epub 2024 May 23.
3
Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives.
Antibiotics (Basel). 2021 Jun 28;10(7):783. doi: 10.3390/antibiotics10070783.
4
Accelerating the sustainable development goals through microbiology: some efforts and opportunities.
Access Microbiol. 2020 Mar 23;2(5):acmi000112. doi: 10.1099/acmi.0.000112. eCollection 2020.
5
Biosynthesis of Nanomaterials by Species for Application in Lithium Ion Batteries.
Front Microbiol. 2018 Nov 21;9:2817. doi: 10.3389/fmicb.2018.02817. eCollection 2018.

本文引用的文献

1
In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells.
Enzyme Microb Technol. 2016 Dec;95:201-208. doi: 10.1016/j.enzmictec.2016.08.012. Epub 2016 Aug 24.
3
Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.
ACS Synth Biol. 2016 Dec 16;5(12):1497-1504. doi: 10.1021/acssynbio.6b00117. Epub 2016 Jun 17.
4
Construction of a Modular Arsenic-Resistance Operon in E. coli and the Production of Arsenic Nanoparticles.
Front Bioeng Biotechnol. 2015 Oct 20;3:160. doi: 10.3389/fbioe.2015.00160. eCollection 2015.
5
Advances in microbial biosynthesis of metal nanoparticles.
Appl Microbiol Biotechnol. 2016 Jan;100(2):521-34. doi: 10.1007/s00253-015-6904-7. Epub 2015 Aug 25.
7
Biosynthesis of nanoparticles using microbes- a review.
Colloids Surf B Biointerfaces. 2014 Sep 1;121:474-83. doi: 10.1016/j.colsurfb.2014.05.027. Epub 2014 Jun 21.
8
Applications of biosynthesized metallic nanoparticles - a review.
Acta Biomater. 2014 Oct;10(10):4023-42. doi: 10.1016/j.actbio.2014.05.022. Epub 2014 Jun 9.
9
Exploring the potential of metallic nanoparticles within synthetic biology.
N Biotechnol. 2014 Dec 25;31(6):572-8. doi: 10.1016/j.nbt.2014.03.004. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验