Aymerich María, Nieto Daniel, Álvarez Ezequiel, Flores-Arias María T
Photonics4Life Research Group, Departamento de Física Aplicada, Facultad de Física, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS) SERGAS, Santiago de Compostela 15706, Spain and CIBERCV, Madrid, Spain.
Materials (Basel). 2017 Feb 22;10(2):214. doi: 10.3390/ma10020214.
A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material.
介绍了一种基于激光的技术,该技术利用塔尔博特效应和微透镜阵列对钛和钽基板进行微结构化处理。通过使用这种混合技术,我们能够在生物材料的顶表面上生成不同的图案和几何形状。塔尔博特效应使我们能够快速进行微结构化处理,解决了使用微透镜进行多图案化时的常见问题,即在生物材料烧蚀过程中排出的材料会损坏微透镜。塔尔博特效应使我们能够增加工作距离并减小图案的周期。我们还证明了这些几何形状和图案充当细胞的锚定点,影响细胞对金属基板的粘附并指导它们在材料上的扩散方式。