Tan Linghua, Xu Jianhua, Li Shiying, Li Dongnan, Dai Yuming, Kou Bo, Chen Yu
National Special Superfine Power Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China.
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Materials (Basel). 2017 May 2;10(5):484. doi: 10.3390/ma10050484.
Novel graphitic carbon nitride/CuO (g-C₃N₄/CuO) nanocomposite was synthesized through a facile precipitation method. Due to the strong ion-dipole interaction between copper ions and nitrogen atoms of g-C₃N₄, CuO nanorods (length 200-300 nm, diameter 5-10 nm) were directly grown on g-C₃N₄, forming a g-C₃N₄/CuO nanocomposite, which was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Finally, thermal decomposition of ammonium perchlorate (AP) in the absence and presence of the prepared g-C₃N₄/CuO nanocomposite was examined by differential thermal analysis (DTA), and thermal gravimetric analysis (TGA). The g-C₃N₄/CuO nanocomposite showed promising catalytic effects for the thermal decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance (g-C₃N₄/20 wt % CuO), the decomposition temperature of AP was decreased by up to 105.5 °C and only one decomposition step was found instead of the two steps commonly reported in other examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite. This study demonstrated a successful example regarding the direct growth of metal oxide on g-C₃N₄ by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which could provide a novel strategy for the preparation of g-C₃N₄-based nanocomposite.
通过一种简便的沉淀法合成了新型石墨相氮化碳/氧化铜(g-C₃N₄/CuO)纳米复合材料。由于铜离子与g-C₃N₄的氮原子之间存在强烈的离子-偶极相互作用,氧化铜纳米棒(长度200 - 300纳米,直径5 - 10纳米)直接生长在g-C₃N₄上,形成了g-C₃N₄/CuO纳米复合材料,这通过X射线衍射(XRD)、透射电子显微镜(TEM)、场发射扫描电子显微镜(FESEM)和X射线光电子能谱(XPS)得到了证实。最后,通过差示热分析(DTA)和热重分析(TGA)研究了在有无制备的g-C₃N₄/CuO纳米复合材料存在的情况下高氯酸铵(AP)的热分解情况。g-C₃N₄/CuO纳米复合材料对AP的热分解显示出有前景的催化效果。加入具有最佳催化性能的2 wt%纳米复合材料(g-C₃N₄/20 wt% CuO)后,AP的分解温度降低了高达105.5℃,并且只发现了一个分解步骤,而不是其他例子中通常报道的两个步骤,这证明了合成的纳米复合材料具有协同催化活性。这项研究展示了一个关于通过金属离子与氮原子上的孤对电子之间的离子-偶极相互作用在g-C₃N₄上直接生长金属氧化物的成功例子,这可以为制备基于g-C₃N₄的纳米复合材料提供一种新策略。