文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学应用的介孔生物活性玻璃微珠纳米纤维结构的制备

Preparation of Nanofibrous Structure of Mesoporous Bioactive Glass Microbeads for Biomedical Applications.

作者信息

Tsai Shiao-Wen, Chang Yu-Han, Yu Jing-Lun, Hsu Hsien-Wen, Rau Lih-Rou, Hsu Fu-Yin

机构信息

Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Taoyuan 33302, Taiwan.

Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linko 33305, Taiwan.

出版信息

Materials (Basel). 2016 Jun 17;9(6):487. doi: 10.3390/ma9060487.


DOI:10.3390/ma9060487
PMID:28773610
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5456792/
Abstract

A highly ordered, mesoporous (pore size 2~50 nm) bioactive glass (MBG) structure has a greater surface area and pore volume and excellent bone-forming bioactivity compared with traditional bioactive glasses (BGs). Hence, MBGs have been used in drug delivery and bone tissue engineering. MBGs can be developed as either a dense or porous block. Compared with a block, microbeads provide greater flexibility for filling different-shaped cavities and are suitable for culturing cells . In contrast, the fibrous structure of a scaffold has been shown to increase cell attachment and differentiation due to its ability to mimic the three-dimensional structure of natural extracellular matrices. Hence, the aim of this study is to fabricate MBG microbeads with a fibrous structure. First, a sol-gel/electrospinning technique was utilized to fabricate the MBG nanofiber (MBGNF) structure. Subsequently, the MBGNF microbeads (MFBs) were produced by an electrospraying technology. The results show that the diameter of the MFBs decreases when the applied voltage increases. The drug loading and release profiles and mechanisms of the MFBs were also evaluated. MFBs had a better drug entrapment efficiency, could reduce the burst release of tetracycline, and sustain the release over 10 days. Hence, the MFBs may be suitable drug carriers. In addition, the cellular attachment of MG63 osteoblast-like cells is significantly higher for MFBs than for glass microbeads after culturing for 4 h. The nanofibrous structure of MFBs could provide an appropriate environment for cellular spreading. Therefore, MFBs have great potential for use as a bone graft material in bone tissue engineering applications.

摘要

与传统生物活性玻璃(BGs)相比,高度有序的介孔(孔径2~50 nm)生物活性玻璃(MBG)结构具有更大的表面积和孔体积以及优异的骨形成生物活性。因此,MBG已被用于药物递送和骨组织工程。MBG可以制成致密块体或多孔块体。与块体相比,微珠在填充不同形状的腔隙方面具有更大的灵活性,并且适合用于细胞培养。相比之下,支架的纤维结构已被证明因其能够模拟天然细胞外基质的三维结构而增加细胞附着和分化。因此,本研究的目的是制备具有纤维结构的MBG微珠。首先,利用溶胶 - 凝胶/静电纺丝技术制备MBG纳米纤维(MBGNF)结构。随后,通过电喷雾技术制备MBGNF微珠(MFBs)。结果表明,施加电压增加时,MFBs的直径减小。还评估了MFBs的载药和释放曲线及机制。MFBs具有更好的药物包封效率,可以减少四环素的突释,并在10天内持续释放。因此,MFBs可能是合适的药物载体。此外,培养4小时后,MG63成骨样细胞在MFBs上的细胞附着明显高于玻璃微珠。MFBs的纳米纤维结构可以为细胞铺展提供合适的环境。因此,MFBs在骨组织工程应用中作为骨移植材料具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/2c1e9cc35740/materials-09-00487-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/b709f7f0730c/materials-09-00487-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/a5664f61141f/materials-09-00487-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/e6f1fc9c1e60/materials-09-00487-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/13e2374ade5c/materials-09-00487-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/a2c98f946cf7/materials-09-00487-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/a1bd418ca72a/materials-09-00487-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/ebc221676241/materials-09-00487-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/2c1e9cc35740/materials-09-00487-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/b709f7f0730c/materials-09-00487-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/a5664f61141f/materials-09-00487-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/e6f1fc9c1e60/materials-09-00487-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/13e2374ade5c/materials-09-00487-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/a2c98f946cf7/materials-09-00487-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/a1bd418ca72a/materials-09-00487-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/ebc221676241/materials-09-00487-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/5456792/2c1e9cc35740/materials-09-00487-g008.jpg

相似文献

[1]
Preparation of Nanofibrous Structure of Mesoporous Bioactive Glass Microbeads for Biomedical Applications.

Materials (Basel). 2016-6-17

[2]
Macroporous microbeads containing apatite-modified mesoporous bioactive glass nanofibres for bone tissue engineering applications.

Mater Sci Eng C Mater Biol Appl. 2018-4-13

[3]
Synthesis and Characterization of Silver-Doped Mesoporous Bioactive Glass and Its Applications in Conjunction with Electrospinning.

Materials (Basel). 2018-4-28

[4]
Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds.

Biomaterials. 2011-6-24

[5]
Mesoporous bioactive glasses for the combined application of osteosarcoma treatment and bone regeneration.

Mater Sci Eng C Mater Biol Appl. 2019-7-19

[6]
Strontium- and Cobalt-Doped Multicomponent Mesoporous Bioactive Glasses (MBGs) for Potential Use in Bone Tissue Engineering Applications.

Materials (Basel). 2020-3-16

[7]
Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application.

Interface Focus. 2012-3-21

[8]
The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lactide-co-glycolide) films.

Biomaterials. 2009-4

[9]
Fabrication and Characteristics of Porous Hydroxyapatite-CaO Composite Nanofibers for Biomedical Applications.

Nanomaterials (Basel). 2018-7-26

[10]
Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system.

J Control Release. 2006-2-21

引用本文的文献

[1]
Influence of the Components and Orientation of Hydroxyapatite Fibrous Substrates on Osteoblast Behavior.

J Funct Biomater. 2022-9-29

[2]
Ceramic Nanofiber Materials for Wound Healing and Bone Regeneration: A Brief Review.

Materials (Basel). 2022-5-31

[3]
Magnetic mesoporous bioactive glass for synergetic use in bone regeneration, hyperthermia treatment, and controlled drug delivery.

RSC Adv. 2020-6-4

[4]
The Effect of Strontium-Substituted Hydroxyapatite Nanofibrous Matrix on Osteoblast Proliferation and Differentiation.

Membranes (Basel). 2021-8-14

[5]
Gelatin Hydrogels Reinforced by Absorbable Nanoparticles and Fibrils Cured by Visible Light for Tissue Adhesive Applications.

Polymers (Basel). 2020-5-13

[6]
Fabrication and Characterization of Strontium-Substituted Hydroxyapatite-CaO-CaCO₃ Nanofibers with a Mesoporous Structure as Drug Delivery Carriers.

Pharmaceutics. 2018-10-8

[7]
Bombyx mori Silk Fibroin Scaffolds with Antheraea pernyi Silk Fibroin Micro/Nano Fibers for Promoting EA. hy926 Cell Proliferation.

Materials (Basel). 2017-10-3

本文引用的文献

[1]
In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

Mater Sci Eng C Mater Biol Appl. 2016-3

[2]
Development and Evaluation of Thymol Microparticles Using Cellulose Derivatives as Controlled Release Dosage form.

Iran J Pharm Res. 2015

[3]
Phase separation induced shell thickness variations in electrospun hollow Bioglass 45S5 fiber mats for drug delivery applications.

Phys Chem Chem Phys. 2015-6-21

[4]
Hyaluronan-cisplatin conjugate nanoparticles embedded in Eudragit S100-coated pectin/alginate microbeads for colon drug delivery.

Int J Nanomedicine. 2013-7-3

[5]
Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application.

Interface Focus. 2012-3-21

[6]
Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release.

J Appl Biomater Funct Mater. 2012-6-26

[7]
Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification.

J Biomed Mater Res A. 2010-11

[8]
Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems.

Expert Opin Drug Deliv. 2010-4

[9]
Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells.

Acta Biomater. 2009-12-24

[10]
Electrospun submicron bioactive glass fibers for bone tissue scaffold.

J Mater Sci Mater Med. 2009-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索