Tordai Hedvig, Leveles Ibolya, Hegedűs Tamás
Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary; Genome Metabolism Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
Biochem Biophys Res Commun. 2017 Sep 30;491(4):986-993. doi: 10.1016/j.bbrc.2017.07.165. Epub 2017 Jul 31.
Cystic fibrosis (CF), a lethal monogenic disease, is caused by mutant variants of the CF transmembrane conductance regulator (CFTR). Recent advances in single molecule cryo-EM methods enabled structural determination of full-length human and zebrafish CFTR, achieving an important milestone for CF drug development. To relate these structures to the gating cycle, we examined its dynamic features using molecular dynamics simulations. Our results show that the nucleotide binding domains (NBDs) in this bottom-open apo conformation exhibit motions related to dimerization and the bottom-closed apo CFTR model indicates opening of NBDs in contrast to transporters. These observations help in understanding the properties of CFTR chloride channel distinct from transporters and in proper interpretation of available structural information on this ABC protein.
囊性纤维化(CF)是一种致命的单基因疾病,由囊性纤维化跨膜传导调节因子(CFTR)的突变变体引起。单分子冷冻电镜方法的最新进展使得全长人类和斑马鱼CFTR的结构得以确定,这为CF药物开发实现了一个重要的里程碑。为了将这些结构与门控循环联系起来,我们使用分子动力学模拟研究了其动态特征。我们的结果表明,处于这种底部开放的无配体构象的核苷酸结合结构域(NBDs)表现出与二聚化相关的运动,而底部关闭的无配体CFTR模型表明NBDs与转运蛋白不同,呈现出开放状态。这些观察结果有助于理解CFTR氯离子通道与转运蛋白不同的特性,并有助于正确解释关于这种ABC蛋白的现有结构信息。