Suppr超能文献

利用对比学习实现细胞外数据的稳健且通用的表示。

Towards robust and generalizable representations of extracellular data using contrastive learning.

作者信息

Vishnubhotla Ankit, Loh Charlotte, Paninski Liam, Srivastava Akash, Hurwitz Cole

机构信息

Columbia University, New York.

MIT, Massachusetts.

出版信息

Adv Neural Inf Process Syst. 2023;36:42271-42284.

Abstract

Contrastive learning is quickly becoming an essential tool in neuroscience for extracting robust and meaningful representations of neural activity. Despite numerous applications to neuronal population data, there has been little exploration of how these methods can be adapted to key primary data analysis tasks such as spike sorting or cell-type classification. In this work, we propose a novel contrastive learning framework, (ontrastive mbeddings for xtracellular ata), for high-density extracellular recordings. We demonstrate that through careful design of the network architecture and data augmentations, it is possible to generically extract representations that far outperform current specialized approaches. We validate our method across multiple high-density extracellular recordings. All code used to run CEED can be found at https://github.com/ankitvishnu23/CEED.

摘要

对比学习正迅速成为神经科学中用于提取神经活动稳健且有意义表征的重要工具。尽管在神经元群体数据方面有众多应用,但对于如何将这些方法应用于诸如尖峰分类或细胞类型分类等关键的初级数据分析任务,却鲜有探索。在这项工作中,我们提出了一种用于高密度细胞外记录的新型对比学习框架(细胞外数据的对比嵌入)。我们证明,通过精心设计网络架构和数据增强,有可能一般性地提取出远优于当前专门方法的表征。我们在多个高密度细胞外记录上验证了我们的方法。运行CEED所使用的所有代码可在https://github.com/ankitvishnu23/CEED找到。

相似文献

本文引用的文献

9
HTsort: Enabling Fast and Accurate Spike Sorting on Multi-Electrode Arrays.HTsort:实现多电极阵列上快速准确的尖峰分类
Front Comput Neurosci. 2021 Jun 21;15:657151. doi: 10.3389/fncom.2021.657151. eCollection 2021.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验