Suppr超能文献

来自激发态分子内质子转移体系的高效热激活延迟荧光

Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System.

作者信息

Mamada Masashi, Inada Ko, Komino Takeshi, Potscavage William J, Nakanotani Hajime, Adachi Chihaya

机构信息

Center for Organic Photonics and Electronics Research (OPERA), JST, ERATO, Adachi Molecular Exciton Engineering Project c/o Center for Organic Photonics and Electronics Research (OPERA), Education Center for Global Leaders in Molecular System for Devices, and International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka 819-0395, Japan.

出版信息

ACS Cent Sci. 2017 Jul 26;3(7):769-777. doi: 10.1021/acscentsci.7b00183. Epub 2017 Jul 7.

Abstract

Thermally activated delayed fluorescence (TADF) materials have shown great potential for highly efficient organic light-emitting diodes (OLEDs). While the current molecular design of TADF materials primarily focuses on combining donor and acceptor units, we present a novel system based on the use of excited-state intramolecular proton transfer (ESIPT) to achieve efficient TADF without relying on the well-established donor-acceptor scheme. In an appropriately designed acridone-based compound with intramolecular hydrogen bonding, ESIPT leads to separation of the highest occupied and lowest unoccupied molecular orbitals, resulting in TADF emission with a photoluminescence quantum yield of nearly 60%. High external electroluminescence quantum efficiencies of up to 14% in OLEDs using this emitter prove that efficient triplet harvesting is possible with ESIPT-based TADF materials. This work will expand and accelerate the development of a wide variety of TADF materials for high performance OLEDs.

摘要

热激活延迟荧光(TADF)材料在高效有机发光二极管(OLED)方面显示出巨大潜力。虽然目前TADF材料的分子设计主要集中在结合供体和受体单元,但我们提出了一种基于激发态分子内质子转移(ESIPT)的新型体系,以在不依赖成熟的供体-受体方案的情况下实现高效TADF。在一种经过适当设计的、具有分子内氢键的吖啶酮基化合物中,ESIPT导致最高占据分子轨道和最低未占据分子轨道的分离,从而产生光致发光量子产率接近60%的TADF发射。使用这种发光体的OLED中高达14%的高外部电致发光量子效率证明,基于ESIPT的TADF材料能够实现高效的三线态俘获。这项工作将扩展并加速用于高性能OLED的各种TADF材料的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27be/5532718/b9585b8fb10a/oc-2017-001836_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验