Suppr超能文献

测量双层石墨烯中的层间剪切应力。

Measuring Interlayer Shear Stress in Bilayer Graphene.

作者信息

Wang Guorui, Dai Zhaohe, Wang Yanlei, Tan PingHeng, Liu Luqi, Xu Zhiping, Wei Yueguang, Huang Rui, Zhang Zhong

机构信息

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China.

出版信息

Phys Rev Lett. 2017 Jul 21;119(3):036101. doi: 10.1103/PhysRevLett.119.036101. Epub 2017 Jul 17.

Abstract

Monolayer two-dimensional (2D) crystals exhibit a host of intriguing properties, but the most exciting applications may come from stacking them into multilayer structures. Interlayer and interfacial shear interactions could play a crucial role in the performance and reliability of these applications, but little is known about the key parameters controlling shear deformation across the layers and interfaces between 2D materials. Herein, we report the first measurement of the interlayer shear stress of bilayer graphene based on pressurized microscale bubble loading devices. We demonstrate continuous growth of an interlayer shear zone outside the bubble edge and extract an interlayer shear stress of 40 kPa based on a membrane analysis for bilayer graphene bubbles. Meanwhile, a much higher interfacial shear stress of 1.64 MPa was determined for monolayer graphene on a silicon oxide substrate. Our results not only provide insights into the interfacial shear responses of the thinnest structures possible, but also establish an experimental method for characterizing the fundamental interlayer shear properties of the emerging 2D materials for potential applications in multilayer systems.

摘要

单层二维(2D)晶体展现出许多引人入胜的特性,但最令人兴奋的应用可能来自于将它们堆叠成多层结构。层间和界面剪切相互作用可能在这些应用的性能和可靠性中发挥关键作用,但对于控制二维材料层间和界面处剪切变形的关键参数却知之甚少。在此,我们报告了基于加压微尺度气泡加载装置对双层石墨烯层间剪应力的首次测量。我们展示了气泡边缘外的层间剪切区的持续生长,并基于对双层石墨烯气泡的膜分析得出层间剪应力为40 kPa。同时,对于氧化硅衬底上的单层石墨烯,确定了更高的界面剪应力为1.64 MPa。我们的结果不仅为理解可能的最薄结构的界面剪切响应提供了见解,还建立了一种实验方法来表征新兴二维材料的基本层间剪切特性,以便在多层系统中进行潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验