Sci Prog. 2017 Sep 1;100(3):241-292. doi: 10.3184/003685017X14993478654307. Epub 2017 Aug 5.
Since the original observation by Zeeman, that spectral lines can be affected by magnetic fields, 'magnetic spectroscopy' has evolved into the broad arsenal of techniques known as 'magnetic resonance'. This review focuses on nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and muon spin resonance (μSR): methods which have provided unparalleled insight into the structures, reactivity and dynamics of molecules, and thereby contributed to a detailed understanding of important aspects of chemistry, and the materials, biomedical, and environmental sciences. Magnetic resonance imaging (MRI), in vivo magnetic resonance spectroscopy (MRS) and functional magnetic resonance spectroscopy (fMRS) are also described. EPR is outlined as a principal method for investigating free radicals, along with biomedical applications, and mention is given to the more recent innovation of pulsed EPR techniques. In the final section of the article, the various methods known as μSR are collected under the heading 'muon spin resonance', in order to emphasise their complementarity with the more familiar NMR and EPR.
自从塞曼最初观察到光谱线可以受到磁场的影响以来,“磁共振光谱学”已经发展成为被称为“磁共振”的广泛技术手段。这篇综述重点介绍了核磁共振(NMR)、电子顺磁共振(EPR)和μ子自旋共振(μSR):这些方法为分子的结构、反应性和动力学提供了无与伦比的洞察力,从而有助于深入了解化学的重要方面,以及材料、生物医学和环境科学。磁共振成像(MRI)、体内磁共振波谱(MRS)和功能磁共振波谱(fMRS)也有所描述。EPR 被概述为研究自由基的主要方法,以及生物医学应用,并提到了最近的脉冲 EPR 技术创新。在文章的最后一节中,将各种被称为μSR 的方法归为“μ子自旋共振”,以强调它们与更为人熟悉的 NMR 和 EPR 的互补性。