Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France.
Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
J Am Chem Soc. 2017 Aug 30;139(34):11913-11922. doi: 10.1021/jacs.7b05732. Epub 2017 Aug 22.
Thin layers of oligomers with thickness between 7 and 9 nm were deposited on flat gold electrode surfaces by electrochemical reduction of diazonium reagents, then a Ti(2 nm)/Au top contact was applied to complete a solid-state molecular junction. The molecular layers investigated included donor molecules with relatively high energy HOMO, molecules with high HOMO-LUMO gaps and acceptor molecules with low energy LUMO and terminal alkyl chain. Using an oligo(bisthienylbenzene) based layer, a molecule whose HOMO energy level in a vacuum is close to the Fermi level of the gold bottom electrode, the devices exhibit robust and highly reproducible rectification ratios above 1000 at low voltage (2.7 V). Higher current is observed when the bottom gold electrode is biased positively. When the molecular layer is based on a molecule with a high HOMO-LUMO gap, i.e., tetrafluorobenzene, no rectification is observed, while the direction of rectification is reversed if the molecular layer consists of naphtalene diimides having low LUMO energy level. Rectification persisted at low temperature (7 K), and was activationless between 7 and 100 K. The results show that rectification is induced by the asymmetric contact but is also directly affected by orbital energies of the molecular layer. A "molecular signature" on transport through layers with thicknesses above those used when direct tunneling dominates is thus clearly observed, and the rectification mechanism is discussed in terms of Fermi level pinning and electronic coupling between molecules and contacts.
通过电化学还原重氮试剂,在平整的金电极表面沉积了厚度在 7 至 9nm 之间的寡聚物薄层,然后施加 Ti(2nm)/Au 顶接触以完成固态分子结。研究的分子层包括具有相对较高 HOMO 能量的给体分子、具有高 HOMO-LUMO 能隙的分子和具有低 LUMO 能量和末端烷基链的受体分子。使用基于寡聚(双噻吩基苯)的层,其 HOMO 能级在真空中接近金底电极的费米能级的分子,器件在低电压(2.7V)下表现出稳健且高度可重复的大于 1000 的整流比。当底金电极偏置为正时,观察到更高的电流。当分子层基于具有高 HOMO-LUMO 能隙的分子,即四氟苯时,没有观察到整流,而当分子层由具有低 LUMO 能量的萘二酰亚胺组成时,整流方向反转。整流在低温(7K)下持续存在,在 7 至 100K 之间无活化能。结果表明,整流是由不对称接触引起的,但也直接受到分子层轨道能量的影响。因此,在直接隧穿占主导地位的厚度之上的层中传输时,明显观察到“分子特征”,并根据费米能级钉扎和分子与接触之间的电子耦合讨论了整流机制。