Suppr超能文献

潜在转移性乳腺癌标志物的基因表达荟萃分析

Gene Expression Meta-Analysis of Potential Metastatic Breast Cancer Markers.

作者信息

Bell R, Barraclough R, Vasieva O

机构信息

Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom.

出版信息

Curr Mol Med. 2017;17(3):200-210. doi: 10.2174/1566524017666170807144946.

Abstract

BACKGROUND

Breast cancer metastasis is a highly prevalent cause of death for European females. DNA microarray analysis has established that primary tumors, which remain localized, differ in gene expression from those that metastasize. Crossanalysis of these studies allow to revile the differences that may be used as predictive in the disease prognosis and therapy.

OBJECTIVE

The aim of the project was to validate suggested prognostic and therapeutic markers using meta-analysis of data on gene expression in metastatic and primary breast cancer tumors.

METHOD

Data on relative gene expression values from 12 studies on primary breast cancer and breast cancer metastasis were retrieved from Genevestigator (Nebion) database. The results of the data meta-analysis were compared with results of literature mining for suggested metastatic breast cancer markers and vectors and consistency of their reported differential expression.

RESULTS

Our analysis suggested that transcriptional expression of the COX2 gene is significantly downregulated in metastatic tissue compared to normal breast tissue, but is not downregulated in primary tumors compared with normal breast tissue and may be used as a differential marker in metastatic breast cancer diagnostics. RRM2 gene expression decreases in metastases when compared to primary breast cancer and could be suggested as a marker to trace breast cancer evolution. Our study also supports MMP1, VCAM1, FZD3, VEGFC, FOXM1 and MUC1 as breast cancer onset markers, as these genes demonstrate significant differential expression in breast neoplasms compared with normal breast tissue.

CONCLUSION

COX2 and RRM2 are suggested to be prominent markers for breast cancer metastasis. The crosstalk between upstream regulators of genes differentially expressed in primary breast tumors and metastasis also suggests pathways involving p53, ER1, ERB-B2, TNF and WNT, as the most promising regulators that may be considered for new complex drug therapeutic interventions in breast cancer metastatic progression.

摘要

背景

乳腺癌转移是欧洲女性死亡的一个高度常见原因。DNA微阵列分析已证实,局限于原位的原发性肿瘤与发生转移的肿瘤在基因表达上存在差异。对这些研究进行交叉分析有助于揭示那些可用于疾病预后和治疗预测的差异。

目的

本项目旨在通过对转移性和原发性乳腺癌肿瘤基因表达数据进行荟萃分析,验证所提出的预后和治疗标志物。

方法

从Genevestigator(Nebion)数据库中检索了12项关于原发性乳腺癌和乳腺癌转移的相对基因表达值数据。将数据荟萃分析的结果与文献挖掘中所提出的转移性乳腺癌标志物和载体的结果及其报道的差异表达一致性进行比较。

结果

我们的分析表明,与正常乳腺组织相比,COX2基因的转录表达在转移组织中显著下调,但与正常乳腺组织相比,在原发性肿瘤中并未下调,可作为转移性乳腺癌诊断的差异标志物。与原发性乳腺癌相比,RRM2基因在转移灶中的表达降低,可作为追踪乳腺癌进展的标志物。我们的研究还支持MMP1、VCAM1、FZD3、VEGFC、FOXM1和MUC1作为乳腺癌发病标志物,因为与正常乳腺组织相比,这些基因在乳腺肿瘤中表现出显著的差异表达。

结论

COX2和RRM2被认为是乳腺癌转移的重要标志物。原发性乳腺肿瘤和转移灶中差异表达基因的上游调节因子之间的相互作用还提示了涉及p53、ER1、ERB - B2、TNF和WNT的信号通路,作为最有前景的调节因子,可能在乳腺癌转移进展的新的联合药物治疗干预中予以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8b/5748874/c3db562bb60c/CMM-17-200_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验