Suppr超能文献

精确、大量且并行的宏观超分子组装的自校正策略。

Self-Correction Strategy for Precise, Massive, and Parallel Macroscopic Supramolecular Assembly.

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstr. 50, Aachen, D-52056, Germany.

出版信息

Adv Mater. 2017 Oct;29(37). doi: 10.1002/adma.201702444. Epub 2017 Aug 7.

Abstract

Macroscopic supramolecular assembly (MSA) represents a new advancement in supramolecular chemistry involving building blocks with sizes beyond tens of micrometers associating through noncovalent interactions. MSA is established as a unique method to fabricate supramolecularly assembled materials by shortening the length scale between bulk materials and building blocks. However, improving the precise alignment during assembly to form orderly assembled structures remains a challenge. Although the pretreatment of building blocks can ameliorate order to a certain degree, defects or mismatching still exists, which limits the practical applications of MSA. Therefore, an iterative poststrategy is proposed, where self-correction based on dynamic assembly/disassembly is applied to achieve precise, massive, and parallel assembly. The self-correction process consists of two key steps: the identification of poorly ordered structures and the selective correction of these structures. This study develops a diffusion-kinetics-dependent disassembly to well identify the poorly aligned structures and correct these structures through iterations of disassembly/reassembly in a programmed fashion. Finally, a massive and parallel assembly of 100 precise dimers over eight iteration cycles is achieved, thus providing a powerful solution to the problem of processing insensitivity to errors in self-assembly-related methods.

摘要

宏观超分子组装(MSA)代表了超分子化学的一项新进展,涉及通过非共价相互作用将尺寸超过数十微米的构建块聚集在一起。MSA 被确立为通过缩短大块材料和构建块之间的长度尺度来制造超分子组装材料的独特方法。然而,提高组装过程中的精确对准以形成有序组装结构仍然是一个挑战。尽管构建块的预处理可以在一定程度上改善有序性,但仍然存在缺陷或不匹配,这限制了 MSA 的实际应用。因此,提出了一种迭代后策略,其中基于动态组装/拆卸的自校正被应用于实现精确、大规模和并行组装。自校正过程由两个关键步骤组成:识别无序结构和选择性校正这些结构。本研究开发了一种扩散动力学依赖性的拆卸方法,以很好地识别未对准的结构,并通过程序化的拆卸/重新组装迭代来纠正这些结构。最后,在八个迭代循环中实现了 100 个精确二聚体的大规模和并行组装,从而为解决自组装相关方法中对误差不敏感的处理问题提供了有力的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验