Suppr超能文献

通过长时间的马兰戈尼运动实现平行且精确的宏观超分子组装

Parallel and Precise Macroscopic Supramolecular Assembly through Prolonged Marangoni Motion.

作者信息

Cheng Mengjiao, Zhu Guiqiang, Li Lin, Zhang Shu, Zhang Dequn, Kuehne Alexander J C, Shi Feng

机构信息

State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials &, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.

出版信息

Angew Chem Int Ed Engl. 2018 Oct 22;57(43):14106-14110. doi: 10.1002/anie.201808294. Epub 2018 Oct 1.

Abstract

Macroscopic supramolecular assembly (MSA) is a rising concept in supramolecular science, in which building blocks with sizes exceeding 10 μm self-assemble into larger structures. MSA faces the challenge of developing appropriate self-propulsion strategies to improve the motility of the macroscopic building blocks. Although the Marangoni effect is an ideal driving force with random motion paths, excessive aggregation of the surfactant and fast decay of motion remain challenging problems. Hence, a molecular interference strategy to drive the self-assembly over longer times by finely controlling the interfacial adsorption of surfactants using dynamic equilibria is proposed. Surfactant depletion through molecular recognition in the solution to oppose fast interfacial aggregation efficiently facilitates macroscopic motion and assembly. The resulting motility lifetime is extended remarkably from 120 s to 2200 s; with the improved kinetic energy, the assembly probability increases from 20 % to 100 %.

摘要

宏观超分子组装(MSA)是超分子科学中一个新兴的概念,其中尺寸超过10μm的构建单元自组装成更大的结构。MSA面临着开发合适的自推进策略以提高宏观构建单元运动性的挑战。尽管马兰戈尼效应是一种具有随机运动路径的理想驱动力,但表面活性剂的过度聚集和运动的快速衰减仍然是具有挑战性的问题。因此,提出了一种分子干扰策略,通过利用动态平衡精细控制表面活性剂的界面吸附来驱动更长时间的自组装。通过溶液中的分子识别实现表面活性剂消耗以有效对抗快速界面聚集,这极大地促进了宏观运动和组装。由此产生的运动寿命从120秒显著延长至2200秒;随着动能的提高,组装概率从20%增加到100%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验