Suppr超能文献

一种通过室内地图从店内射频识别数据集挖掘可操作导航模式的框架。

A framework for mining actionable navigation patterns from in-store RFID datasets via indoor mapping.

作者信息

Shen Bin, Zheng Qiuhua, Li Xingsen, Xu Libo

机构信息

Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2015 Mar 5;15(3):5344-75. doi: 10.3390/s150305344.

Abstract

With the quick development of RFID technology and the decreasing prices of RFID devices, RFID is becoming widely used in various intelligent services. Especially in the retail application domain, RFID is increasingly adopted to capture the shopping tracks and behavior of in-store customers. To further enhance the potential of this promising application, in this paper, we propose a unified framework for RFID-based path analytics, which uses both in-store shopping paths and RFID-based purchasing data to mine actionable navigation patterns. Four modules of this framework are discussed, which are: (1) mapping from the physical space to the cyber space, (2) data preprocessing, (3) pattern mining and (4) knowledge understanding and utilization. In the data preprocessing module, the critical problem of how to capture the mainstream shopping path sequences while wiping out unnecessary redundant and repeated details is addressed in detail. To solve this problem, two types of redundant patterns, i.e., loop repeat pattern and palindrome-contained pattern are recognized and the corresponding processing algorithms are proposed. The experimental results show that the redundant pattern filtering functions are effective and scalable. Overall, this work builds a bridge between indoor positioning and advanced data mining technologies, and provides a feasible way to study customers' shopping behaviors via multi-source RFID data.

摘要

随着射频识别(RFID)技术的快速发展以及RFID设备价格的不断下降,RFID在各种智能服务中得到了广泛应用。特别是在零售应用领域,越来越多地采用RFID来捕捉店内顾客的购物轨迹和行为。为了进一步提升这一有前景应用的潜力,在本文中,我们提出了一个基于RFID的路径分析统一框架,该框架利用店内购物路径和基于RFID的购买数据来挖掘可操作的导航模式。讨论了该框架的四个模块,即:(1)从物理空间到网络空间的映射,(2)数据预处理,(3)模式挖掘以及(4)知识理解与利用。在数据预处理模块中,详细探讨了如何在消除不必要的冗余和重复细节的同时捕捉主流购物路径序列这一关键问题。为解决此问题,识别出了两种冗余模式,即循环重复模式和包含回文的模式,并提出了相应的处理算法。实验结果表明,冗余模式过滤功能是有效且可扩展的。总体而言,这项工作在室内定位和先进的数据挖掘技术之间架起了一座桥梁,并提供了一种通过多源RFID数据研究顾客购物行为的可行方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b317/4435189/6deca8db7e71/sensors-15-05344-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验