Saylan Yeşeren, Tamahkar Emel, Denizli Adil
a Department of Chemistry , Hacettepe University , Ankara , Turkey.
b Department of Chemical Engineering , Hitit University , Çorum , Turkey.
J Biomater Sci Polym Ed. 2017 Nov;28(16):1950-1965. doi: 10.1080/09205063.2017.1364099. Epub 2017 Aug 17.
Here, we developed the lysozyme imprinted bacterial cellulose (Lyz-MIP/BC) nanofibers via the surface imprinting strategy that was designed to recognize lysozyme. This study includes the molecular imprinting method onto the surface of bacterial cellulose nanofibers in the presence of lysozyme by metal ion coordination, as well as further characterizations methods FTIR, SEM and contact angle measurements. The maximum lysozyme adsorption capacity of Lyz-MIP/BC nanofibers was found to be 71 mg/g. The Lyz-MIP/BC nanofibers showed high selectivity for lysozyme towards bovine serum albumin and cytochrome c. Overall, the Lyz-MIP/BC nanofibers hold great potential for lysozyme recognition due to the high binding capacity, significant selectivity and excellent reusability.
在此,我们通过旨在识别溶菌酶的表面印迹策略,制备了溶菌酶印迹细菌纤维素(Lyz-MIP/BC)纳米纤维。本研究包括在溶菌酶存在下通过金属离子配位将分子印迹方法应用于细菌纤维素纳米纤维表面,以及进一步的表征方法,如傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和接触角测量。发现Lyz-MIP/BC纳米纤维对溶菌酶的最大吸附容量为71 mg/g。Lyz-MIP/BC纳米纤维对溶菌酶相对于牛血清白蛋白和细胞色素c表现出高选择性。总体而言,由于具有高结合能力、显著的选择性和出色的可重复使用性,Lyz-MIP/BC纳米纤维在溶菌酶识别方面具有巨大潜力。