Suppr超能文献

自动图像引导膜片钳技术在脑片神经元研究中的应用。

Application of Automated Image-guided Patch Clamp for the Study of Neurons in Brain Slices.

作者信息

Wu Qiuyu, Chubykin Alexander A

机构信息

Department of Biological Sciences, Purdue University; Purdue Institute for Integrative Neuroscience, Purdue University.

Department of Biological Sciences, Purdue University; Purdue Institute for Integrative Neuroscience, Purdue University;

出版信息

J Vis Exp. 2017 Jul 31(125):56010. doi: 10.3791/56010.

Abstract

Whole-cell patch clamp is the gold-standard method to measure the electrical properties of single cells. However, the in vitro patch clamp remains a challenging and low-throughput technique due to its complexity and high reliance on user operation and control. This manuscript demonstrates an image-guided automatic patch clamp system for in vitro whole-cell patch clamp experiments in acute brain slices. Our system implements a computer vision-based algorithm to detect fluorescently labeled cells and to target them for fully automatic patching using a micromanipulator and internal pipette pressure control. The entire process is highly automated, with minimal requirements for human intervention. Real-time experimental information, including electrical resistance and internal pipette pressure, are documented electronically for future analysis and for optimization to different cell types. Although our system is described in the context of acute brain slice recordings, it can also be applied to the automated image-guided patch clamp of dissociated neurons, organotypic slice cultures, and other non-neuronal cell types.

摘要

全细胞膜片钳是测量单细胞电学特性的金标准方法。然而,体外膜片钳技术由于其复杂性以及对用户操作和控制的高度依赖性,仍然是一项具有挑战性且通量较低的技术。本论文展示了一种用于急性脑片体外全细胞膜片钳实验的图像引导自动膜片钳系统。我们的系统实现了一种基于计算机视觉的算法,用于检测荧光标记的细胞,并使用微操纵器和内部移液器压力控制对其进行全自动封接。整个过程高度自动化,对人工干预的需求极小。包括电阻和内部移液器压力在内的实时实验信息以电子方式记录下来,以供未来分析以及针对不同细胞类型进行优化。尽管我们的系统是在急性脑片记录的背景下进行描述的,但它也可应用于解离神经元、器官型切片培养物以及其他非神经元细胞类型的自动图像引导膜片钳实验。

相似文献

2
Integration of autopatching with automated pipette and cell detection in vitro.
J Neurophysiol. 2016 Oct 1;116(4):1564-1578. doi: 10.1152/jn.00386.2016. Epub 2016 Jul 6.
3
Deep learning-based real-time detection of neurons in brain slices for in vitro physiology.
Sci Rep. 2021 Mar 16;11(1):6065. doi: 10.1038/s41598-021-85695-4.
4
Patch-pipet recording in brain slices.
Curr Protoc Neurosci. 2001 May;Chapter 6:Unit 6.7. doi: 10.1002/0471142301.ns607s02.
5
Combining Whole-Cell Patch-Clamp Recordings with Single-Cell RNA Sequencing.
Methods Mol Biol. 2021;2188:179-189. doi: 10.1007/978-1-0716-0818-0_9.
6
Automatic deep learning-driven label-free image-guided patch clamp system.
Nat Commun. 2021 Feb 10;12(1):936. doi: 10.1038/s41467-021-21291-4.
8
9
Minimized cell usage for stem cell-derived and primary cells on an automated patch clamp system.
J Pharmacol Toxicol Methods. 2013 Jul-Aug;68(1):82-7. doi: 10.1016/j.vascn.2013.03.009. Epub 2013 Apr 6.
10
Whole-cell Patch-clamp Recordings in Brain Slices.
J Vis Exp. 2016 Jun 15(112):54024. doi: 10.3791/54024.

引用本文的文献

2
Smart imaging to empower brain-wide neuroscience at single-cell levels.
Brain Inform. 2022 May 11;9(1):10. doi: 10.1186/s40708-022-00158-4.
3
Automated Intracellular Pharmacological Electrophysiology for Ligand-Gated Ionotropic Receptor and Pharmacology Screening.
Mol Pharmacol. 2021 Jul;100(1):73-82. doi: 10.1124/molpharm.120.000195. Epub 2021 May 6.
4
Visual Familiarity Induced 5-Hz Oscillations and Improved Orientation and Direction Selectivities in V1.
J Neurosci. 2021 Mar 24;41(12):2656-2667. doi: 10.1523/JNEUROSCI.1337-20.2021. Epub 2021 Feb 9.
7
PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices.
J Neural Eng. 2019 Aug;16(4):046003. doi: 10.1088/1741-2552/ab1834. Epub 2019 Apr 10.

本文引用的文献

1
Cleaning patch-clamp pipettes for immediate reuse.
Sci Rep. 2016 Oct 11;6:35001. doi: 10.1038/srep35001.
2
Integration of autopatching with automated pipette and cell detection in vitro.
J Neurophysiol. 2016 Oct 1;116(4):1564-1578. doi: 10.1152/jn.00386.2016. Epub 2016 Jul 6.
3
Whole-cell Patch-clamp Recordings in Brain Slices.
J Vis Exp. 2016 Jun 15(112):54024. doi: 10.3791/54024.
4
Assembly and operation of the autopatcher for automated intracellular neural recording in vivo.
Nat Protoc. 2016 Apr;11(4):634-54. doi: 10.1038/nprot.2016.007. Epub 2016 Mar 3.
5
MATLAB-based automated patch-clamp system for awake behaving mice.
J Neurophysiol. 2015 Aug;114(2):1331-45. doi: 10.1152/jn.00025.2015. Epub 2015 Jun 17.
6
ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research.
Front Neuroinform. 2014 Jan 30;8:3. doi: 10.3389/fninf.2014.00003. eCollection 2014.
7
A computer-assisted multi-electrode patch-clamp system.
J Vis Exp. 2013 Oct 18(80):e50630. doi: 10.3791/50630.
8
Giant liposome preparation for imaging and patch-clamp electrophysiology.
J Vis Exp. 2013 Jun 21(76):50227. doi: 10.3791/50227.
9
Automated whole-cell patch-clamp electrophysiology of neurons in vivo.
Nat Methods. 2012 Jun;9(6):585-7. doi: 10.1038/nmeth.1993. Epub 2012 May 6.
10
Making patch-pipettes and sharp electrodes with a programmable puller.
J Vis Exp. 2008 Oct 8(20):939. doi: 10.3791/939.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验