Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary.
Nat Commun. 2021 Feb 10;12(1):936. doi: 10.1038/s41467-021-21291-4.
Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. Here, we demonstrate a tool that fully automatically performs electrophysiological recordings in label-free tissue slices. The automation covers the detection of cells in label-free images, calibration of the micropipette movement, approach to the cell with the pipette, formation of the whole-cell configuration, and recording. The cell detection is based on deep learning. The model is trained on a new image database of neurons in unlabeled brain tissue slices. The pipette tip detection and approaching phase use image analysis techniques for precise movements. High-quality measurements are performed on hundreds of human and rodent neurons. We also demonstrate that further molecular and anatomical analysis can be performed on the recorded cells. The software has a diary module that automatically logs patch clamp events. Our tool can multiply the number of daily measurements to help brain research.
神经元的膜片钳记录是一项劳动密集型且耗时的工作。在这里,我们展示了一种工具,它可以完全自动地在无标记组织切片中进行电生理记录。自动化涵盖了无标记图像中细胞的检测、微管运动的校准、用微管接近细胞、全细胞构型的形成和记录。细胞检测基于深度学习。该模型是在新的无标记脑组织切片神经元图像数据库上进行训练的。微管尖端的检测和接近阶段使用图像分析技术进行精确运动。该软件对数百个人类和啮齿动物神经元进行了高质量的测量。我们还证明可以对记录的细胞进行进一步的分子和解剖分析。该软件有一个日记模块,可以自动记录膜片钳事件。我们的工具可以增加每日测量的数量,帮助脑研究。