Suppr超能文献

基于硅光子学平台中相变材料的全光卷积神经网络。

All-optical convolutional neural network based on phase change materials in silicon photonics platform.

作者信息

Amiri Samaneh, Miri Mehdi

机构信息

Department of Communications and Electronics, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.

出版信息

Sci Rep. 2025 Jul 1;15(1):22055. doi: 10.1038/s41598-025-06259-4.

Abstract

This paper presents a design for an integrated all-optical convolution neural network in which all three network layers i.e. convolution, max-pooling and fully connected can be implemented in silicon photonics platform with the use of GST-based active waveguides. In the convolution layer the need for the ReLU is mitigated by using positive kernel values. Also, the designed max-pooling layer is completely based on silicon photonics elements and requires no electrical or electro-optical logical element. These significantly reduce the overall network complexity. The individual optical elements, network layers and the overall convolution network are simulated using finite-difference time-domain method, coupled mode theory and Python programming, respectively. The network performance is evaluated in MNIST data classification and also signal modulation identification (RML2016.10a dataset) which showed accuracies of 91.90% and 80%, respectively. These are comparable to the highest-reported values for the convolution networks while the proposed network has a less complex design and can be completely implemented with integrated optical elements.

摘要

本文提出了一种集成全光卷积神经网络的设计方案,其中卷积、最大池化和全连接这三个网络层都可以在硅光子平台上利用基于 GST 的有源波导来实现。在卷积层中,通过使用正核值减轻了对 ReLU 的需求。此外,所设计的最大池化层完全基于硅光子元件,不需要电或电光逻辑元件。这些显著降低了整体网络复杂度。分别使用时域有限差分法、耦合模理论和 Python 编程对各个光学元件、网络层和整体卷积网络进行了模拟。在 MNIST 数据分类和信号调制识别(RML2016.10a 数据集)中对网络性能进行了评估,结果分别显示准确率为 91.90%和 80%。这些与卷积网络报告的最高值相当,而所提出的网络设计更简单,并且可以完全用集成光学元件实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d124/12216784/9fc472d7bf8c/41598_2025_6259_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验